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SUMMARY

More potent targeting of the androgen receptor
(AR) in advanced prostate cancer is driving an
increased incidence of neuroendocrine prostate can-
cer (NEPC), an aggressive and treatment-resistant
AR-negative variant. Its molecular pathogenesis re-
mains poorly understood but appears to require
TP53 and RB1 aberration. We modeled the develop-
ment of NEPC from conventional prostatic adenocar-
cinoma using a patient-derived xenograft and found
that the placental gene PEG10 is de-repressed dur-
ing the adaptive response to AR interference and
subsequently highly upregulated in clinical NEPC.
We found that the AR and the E2F/RB pathway
dynamically regulate distinct post-transcriptional
and post-translational isoforms of PEG10 at distinct
stages of NEPC development. In vitro, PEG10 pro-
moted cell-cycle progression from G0/G1 in the
context of TP53 loss and regulated Snail expression
via TGF-b signaling to promote invasion. Taken
together, these findings show the mechanistic rele-
vance of RB1 and TP53 loss in NEPC and suggest
PEG10 as a NEPC-specific target.

INTRODUCTION

Prostate cancer (PCa) at diagnosis is an androgen-driven dis-

ease, dependent on ligand signaling via the androgen receptor

(AR) (Attard et al., 2009). Accordingly, therapeutic strategies for

advanced PCa target the AR axis, depleting ligand availability

or antagonizing the AR itself. Although tumors initially respond,

treatment is palliative, and, given sufficient time, patients will
922 Cell Reports 12, 922–936, August 11, 2015 ª2015 The Authors
relapse with castration-resistant PCa (CRPC). Over recent years,

the implementation of increasingly potent AR-axis interference

has enjoyed success, prolonging patient survival (de Bono

et al., 2011; Scher et al., 2012) but has altered the archetypal dis-

ease course. It is now relatively common to observe advanced

PCaprogressing in theabsenceof risingPSA (thechief biomarker

of AR-dependent disease) and with atypical visceral metastatic

sites (Aparicio et al., 2013; Beltran et al., 2012; Pezaro et al.,

2014). Efforts are underway to clinically and biologically subtype

AR-negative and low-AR-expressing CRPC, which can present

with diverse morphology and biomarker expression, and to

determine how best to recognize and manage the disease (Bel-

tran et al., 2014; Epstein et al., 2014; Terry and Beltran, 2014).

The most recognized AR-negative CRPC variant is neuroen-

docrine (NE) PCa (NEPC), also termed anaplastic or small-cell

carcinoma of the prostate due to the morphological resem-

blance to small-cell lung cancer and the gross differences to

prostatic adenocarcinoma (which makes up >95% of initial di-

agnoses) (Aparicio et al., 2013; Beltran et al., 2011; Cindolo

et al., 2007; Nelson et al., 2007). NEPC is highly aggressive,

has poor prognosis, and is characterized by the expression of

NE markers such as CHGA and SYP. Recent reports of NEPC

tumors in up to 25% of PCa autopsies suggest that the inci-

dence of this variant is rising (Aparicio et al., 2013; Beltran

et al., 2012; Pezaro et al., 2014), and there is now little doubt

that this is driven, in part, by AR-axis interference. Furthermore,

the concurrent presence of identical genomic rearrangements in

adenocarcinoma and NEPC foci from the same patients indi-

cates that, at some point during progression, prostatic adeno-

carcinoma cells undergo ‘‘NE transdifferentiation’’ and become

NEPC cells (Guo et al., 2011; Lotan et al., 2011; Williamson

et al., 2011).

Accumulating evidence suggests that there are two concep-

tual stages of progression to NEPC: (1) an adaptive response

to treatment through the acquisition of a NE-like phenotype
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from an AR-positive adenocarcinoma and (2) the initiation of cell

proliferation. Small foci of malignant cells with an NE-like pheno-

type can be observed in almost all adenocarcinoma tumors (Cin-

dolo et al., 2007; Nelson et al., 2007), suggesting that most tu-

mors are capable of achieving the initial stage. However, the

second stage appears to require distinct genomic aberration, al-

lowing malignant adaptation to a neuronal niche. RB1 loss, TP53

loss, andMYCN amplification are enriched in NEPC tumors (Bel-

tran et al., 2011; Chen et al., 2012; Tan et al., 2014), although it is

not clear whether this aberration arises in the original adenocar-

cinoma cells or in the treatment-induced NE-like cells. The reality

is likely to be heterogeneous, with some tumors undergoing

clonal selection of NE-like cells that have acquired new muta-

tions, while other fortuitously adapted adenocarcinoma foci

transform into NEPC en masse. Despite recent breakthroughs,

the precise mechanisms of NE transdifferentiation remain un-

known, partly due to the difficulty in modeling the transformation

and capturing appropriate clinical specimens for study. Further-

more, the broader NEPC phenotype is characterized by upregu-

lation of a wide program of non-malignant neuronal-like genes,

which confound identification of cancer-specific drivers or ther-

apeutic targets (Beltran et al., 2011; Lin et al., 2014). Conse-

quently, there are few therapeutic options for NEPC (the disease

responds briefly to platinum-based chemotherapy, and there is

an AURKA inhibitor [MLN8237] in phase 2 clinical trials).

Recently, we developed a unique patient-derived xenograft

model of NEPC transdifferentiation: a typical hormone-naive

AR/PSA-positive adenocarcinoma (LTL331) that, upon host

castration, initially regresses but rapidly relapses as terminally

differentiated NEPC (LTL331R) (Lin et al., 2014). The lack of ev-

idence for NEPC cells prior to AR blockade and the conservation

of genome characteristics pre- and post-NEPC development

strongly suggested an adaptive response of the adenocarci-

noma cells that remained after tumor regression. We

hypothesized that examination of regressing tumors during

transdifferentiation, prior to the emergence of the dominant

neuronal expression program that accompanies proliferative

NEPC, would unmask true malignant drivers of disease progres-

sion. Therefore, in this study, we carried out longitudinal expres-

sion profiling of xenograft tumors during the transformation from

adenocarcinoma to NEPC. We identified marked upregulation of

the retrotransposon-derived gene PEG10 (Paternally Expressed

10), a gene normally expressed during placental development.

The onset of PEG10 expression began weeks before emergence

of the neuronal expression signature, persisted through to

terminal NEPC, and is widely expressed in NEPC clinical tissue.

We show that PEG10 is dynamically regulated by AR and the

E2F/RB pathway during NEPC development and demonstrate

that distinct PEG10 isoforms promote proliferation and invasion

of NEPC cells.

RESULTS

Broad Programs of Gene Expression Are Altered during
NE Transdifferentiation
To profile NE transdifferentiation in the LTL331 model, we used

immunohistochemistry, whole-transcriptome sequencing, and

microarray analysis to capture gene expression and copy-num-
C

ber changes in 12 tumor samples collected at different time

points (adenocarcinoma pre-castration; post-castration days

1–3; weeks 1–3, 8, and 12; and post-NEPC development) during

the transformation from adenocarcinoma (LTL331) to NEPC

(LTL331R) (Figures 1A and 1B). Tumors exhibited a marked

response to host castration, with tumor volume falling by >50%

and serum PSA dropping to baseline by 12 weeks. AR protein

expression was lost from the nucleus within 1 week post-castra-

tion, and PSA was undetectable in tumor foci by 3 weeks,

although cells remained characteristic of adenocarcinoma rather

than NEPC until the final time point (Figure 1C). CHGA and other

typical NEPC markers were not overtly expressed at either

themRNA level or protein level until the final timepoints, suggest-

ing that thedevelopment of a neuronal gene expression signature

is a relatively late event during transdifferentiation (Figures 1C

and 1D). Although genome copy-number profiles remained

invariant (Figure S1A), global gene expression profiles demon-

strated gross changes across the transdifferentiation series

(Figure 1E). In the absence of neuronal gene expression, the dif-

ferential in gene expression during transdifferentiation was not

explainable by loss of the AR-responsive transcriptional program

alone and suggested a phase transition period.

We searched for genes showing significant linear or non-linear

increasing expression trends across the microarray series. We

defined two broad classes of genes: those exhibiting transient

expression, peaking at 12 weeks (i.e., low expression in both

NEPC and adenocarcinoma) and genes whose expression

increased throughout the series to peak in terminal NEPC

(Tables S1 and S2). Genes with expression trends peaking at

12 weeks (n = 384) included several anti-apoptotic genes (e.g.,

BIRC3,OLFM4, and REG4) and genes involved in Wnt/b-catenin

signaling (e.g., LEF1, FZD7, and WNT2B) (Figure 1F). Compo-

nents of the Wnt pathway are frequently deregulated through

genomic aberration in CRPC, but not treatment-naive tumors

(Grasso et al., 2012; Kumar et al., 2011), and stromal Wnt

signaling contributes to therapy resistance in tumor cells (Li

et al., 2008; Sun et al., 2012). It is probable that several of the

genes upregulated by 12 weeks are critical for cell survival in

androgen-deprived conditions. Conversely, genes that showed

a significant trend of downregulation by 12 weeks (n = 245) or

NEPC (n = 434) were heavily enriched with androgen-responsive

genes (e.g., KLK3, BMPR1B, SLC45A3, NKX3.1, and MSMB),

and the top predicted ‘‘upstream regulator’’ was synthetic

androgen (12 weeks, p = 3.3E�17; NEPC, p = 2.08E�14). Genes

associated with increasing expression to a peak in terminal

NEPC included oncogenes MET and FYN, potentially involved

in re-establishing growth, and several transcription factors,

including TLX3 and BHLHE22, linked to cell fate specification.

The Placental Gene PEG10 Is Highly Upregulated during
Transdifferentiation and in Clinical NEPC
Given the absence of typical NEPC gene expression at 12 weeks

post-castration in the transdifferentiation series, we sought to

identify genes expressed at this time point that are also ex-

pressed in clinical NEPC, potentially representing biomarkers

or mechanistic drivers of NEPC emergence. First, to identify

robust signatures of clinical NEPC, we compared transcrip-

tome-sequencing-derived gene expression profiles of
ell Reports 12, 922–936, August 11, 2015 ª2015 The Authors 923



Figure 1. Modeling NE Transdifferentiation in Patient-Derived Xenograft LTL331

(A) Overview of the model.

(B) Schematic depicting time points at which tumors were collected along progression to NEPC.

(C) Immunohistochemistry demonstrating changes in marker expression.

(legend continued on next page)
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adenocarcinoma to NEPC from two independent centers (Weill

Cornell Medical College and Vancouver Prostate Centre). The

most upregulated NEPC genes in both cohorts were associated

with typical neuronal-like biology, such as synapse function and

neurite extension (Figure 2A). To unmask malignant drivers

among this neuronal program, we overlaid all genes upregulated

over 8-fold by week 12 in the transdifferentiation series (Fig-

ure 2B). Few typical neuronal genes remained, but PEG10 stood

out as markedly overexpressed during transdifferentiation and in

clinical NEPC (Figures 2B and 2C). PEG10 mRNA expression

was also significantly higher in patient tumors treated with neo-

adjuvant androgen deprivation therapy (ADT) than in treat-

ment-naive tumors (Figure 2D) (Wyatt et al., 2014). At the protein

level, PEG10 expression increased rapidly post-castration in the

transdifferentiation series and increased again to high intensity in

terminal NEPC, consistent with the mRNA data (Figure 2E). Clin-

ical specimens showed the same trend, with PEG10 demon-

strating significantly higher staining intensity in tumors with a

NEPC component (p = 0.01; Wilcoxon rank-sum test) and co-

localizing with CHGA expression (Figures 2F and S1B). In the

transgenic adenocarcinoma of the mouse prostate (TRAMP)

model (which expresses the PB-Tag Line 8247 transgene and

is considered a model of sorts for NEPC), PEG10 also correlated

strongly withCHGA, indicative of PEG10 expression in NEPC tu-

mor foci (Figure S1C) (Haram et al., 2008). Furthermore, high

PEG10 mRNA expression in small-cell lung cancer (Kastner

et al., 2012; Takeuchi et al., 2006) suggests that PEG10 may

be globally expressed in NE tumors (Figure S1D).

The patient whose treatment-naive radical prostatectomy

specimen (Gleason score 4 + 5 = 9) led to the establishment of

LTL331 did not reach PSA nadir post-prostatectomy and

received an initial 18 months of ADT. Unfortunately, he recurred

with metastatic disease 5 years post-prostatectomy. He had ris-

ing serum PSA, indicative of AR-driven adenocarcinoma, and

was treated with a gonadotropin-releasing hormone superagon-

ist and an AR antagonist, to which he experienced a PSA

response (Figure 2G). One year later, he progressed with painful

lytic bone metastases, and a biopsy revealed AR-negative,

CHGA-positive NEPC that was also strongly positive for PEG10.

PEG10 is a retrotransposon-derived gene that integrated into

the therian mammalian genome after the split with prototherians.

AlthoughPEG10no longer retains reverse transcriptaseactivity, it

is remarkably unusual among mammalian genes, harboring an

active �1 ribosomal frameshift element allowing translation of

two overlapping reading frames from the same transcript (RF1

and RF1/2) (Clark et al., 2007; Lux et al., 2010). PEG10 also pos-

sesses two translation initiation sites (‘‘a’’ and ‘‘b,’’ where ‘‘b’’ is

non-ATG) and an active protease domain capable of generating

a self-cleavage product (termed cleaved N-terminal fragment:

CNF), suggesting highly complex biology (Figure S2A). PEG10

has limited expression in adult tissuesbut is required for placental

development, with heterozygous knockout Peg10+/� mice
(D) Plot showing divergence of gene expression profiles during transdifferentiatio

(E) Gene expression clustering demonstrating that weeks 2–12 post-castration a

(F) Selected genes exhibiting a significant trend of increasing mRNA expression

expression normalized to pre-castration levels. Adeno., adenocarcinoma.

See also Tables S1 and S2.

C

demonstrating embryonic lethality by embryonic day (E) 10.5

(Ono et al., 2001). Although PEG10 is reported to be overex-

pressed in some cancers, including hepatocellular carcinoma

(Wanget al., 2008), the functionof PEG10 is unclear, andprevious

work has focused exclusively on the RF1a isoform, which is less

abundantly expressed than other isoforms. Indeed, we have

confirmed that RF1b and RF1b/2 are the predominant isoforms

expressed in PCa cell lines (Figure S2A). In addition, using a pro-

tease-inactive mutant of PEG10, we have identified a second

product of asparytyl protease cleavage around 22 kDa, which

we named CNF2 (Figure S2B). We confirmed both CNF and

CNF2 to be cleaved N-terminal fragments of PEG10 by mass

spectrometry (Figure S2C). Consequently, this study focused on

expressionand functionof theRF1b,RF1b/2,CNF,andCNF2 iso-

forms, which are all expressed in PCa cell lines and LTL331R.

PEG10 Protein Isoforms Are Dynamically Regulated
by AR and E2F/RB at Distinct Stages of
Transdifferentiation
We explored whether the upregulation of PEG10 observed dur-

ing NEPC transdifferentiation could be recapitulated in vitro us-

ing PCa cell lines. Consistent with expression data from clinical

samples, native PEG10 mRNA expression was low in the

androgen-dependent cell line LNCaP, moderate in an

androgen-independent cell line DU145, and high in the cell line

PC3, which is considered similar to NEPC (Figure S2A). Since

the AR controls a broad transcriptional program in PCa, we

examined the possibility that PEG10 is AR regulated by inhibiting

the AR pathway in LNCaP cells. Growing cells in charcoal-

strippedmedia (ligand depletion) or treatment with enzalutamide

(AR antagonist) resulted in a marked increase in PEG10 expres-

sion that was reversed by treatment with the synthetic androgen

R1881 (Figure 3A). This suggests that PEG10 expression is

repressed by the AR. Indeed, computational analysis predicted

AR-binding sites within the PEG10 minimum promoter region

(Figure S3A), and PEG10 promoter activity was increased by en-

zalutamide and decreased by treatment with R1881 (Figure 3B),

supporting repression at the transcriptional level. Furthermore,

published chromatin immunoprecipitation sequencing (ChIP-

seq) data suggested increased AR occupancy at the PEG10 pro-

moter upon R1881 treatment of the AR-positive cell line VCaP

(Yu et al., 2010) (Figure S3B), a finding we confirmed in LNCaP

cells. Conversely, AR occupancy at the PEG10 promoter was

decreased upon treatment with enzalutamide (Figure 3C). Taken

together, these data demonstrate that PEG10 is directly tran-

scriptionally repressed by AR binding to the PEG10 promoter

region.

Although AR inhibition explains the initial onset of PEG10

expression, it is not sufficient to explain the second increase

that occurs at the emergence of proliferative NEPC. However,

PEG10 is also reportedly directly regulated by E2F transcription

factors (Wang et al., 2008), a finding we confirmed in PC3 and
n.

re markedly different to earlier in the series.

during transdifferentiation. Circle size represents log2 fold changes in gene
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DU145, where E2F1 knockdown resulted in decreased PEG10

(Figure S3C). Additionally, we show that, in PCa cell lines,

PEG10 promoter activity is significantly increased by transient

overexpression of E2F1 (Figure S3D), with concomitant increase

in PEG10 expression both at the mRNA level and protein level in

LNCaP (Figure S3E). Furthermore, E2F1 was significantly upre-

gulated in NEPC, compared to adenocarcinoma in both the

LTL331 model and in clinical cohorts (Figures 3D, S3F, and

S3G). The pivotal regulator of E2F1 activity, RB1 is frequently

lost in NEPC (Tan et al., 2014), and genomic analyses demon-

strated that the LTL331 system had a single-copy loss of RB1

and a frame-preserving amino acid insertion in the pocket

domain of the remaining allele (Figure S3H). Application of the

‘‘RB1 loss signature’’ (Ertel et al., 2010) to mRNA expression

data from the LTL331 system and a panel of other PDX tumors,

including multiple adenocarcinoma and NEPC tumors, further

suggested significant RB pathway aberration in LTL331R (Fig-

ure 3E). Overall, these observations suggest that the second in-

crease in PEG10 expression that occurs upon NEPC emergence

in the LTL331 system is associated with aberration in the E2F/RB

pathway; aberration that may also partly explain the clear predis-

position of LTL331 to NE transdifferentiation.

At the protein level, we observed dynamic post-translational

regulation of PEG10 isoforms upon AR inhibition. Concordant

with the transcript level, DU145 and PC3 expressed high levels

of RF1b and RF1b/2 compared to LNCaP, where RF1b espe-

cially was almost undetectable (Figure 3F, left panel: short expo-

sure). However, upon AR inhibition of LNCaP with enzalutamide,

there was amarked increase in CNF abundance and decrease in

RF1b/2, suggesting accelerated proteolytic self-cleavage (Fig-

ure 3F, right panel: long exposure). This effect was reversed

with R1881 treatment, together with an additional switch in pro-

teolytic cleavage pattern from CNF to CNF2. The protein isoform

expression pattern of LNCaP under AR inhibition mirrored the

adenocarcinoma of LTL331 post-castration (rapid increase in

CNF abundance), whereas the high expression of RF1/2 and

RF1b in PC3 and DU145 was very similar to the terminal NEPC

tumor in LTL331R (Figure 3G). The inability of LNCaP cells to

achieve comparable levels of RF1/2 and RF1b may be related

to its intact RB1 gene and further highlights the context depen-

dency of PEG10 isoform expression.

TP53 loss has also been associated with NEPC (Chen et al.,

2012), and analysis of microarray data from a previous study
Figure 2. PEG10 Is Upregulated during NE Transdifferentiation and Is

(A) Significantly upregulated genes in clinical NEPC compared to adenocarcinom

demonstrating the neuronal-like phenotype. VPC, Vancouver Prostate Centre.

(B) Intersection of NE transdifferentiation and clinical NEPC. This plot is the same a

the LTL331 model. Circle size is proportional to gene expression upregulation. P

absence of expression of the majority of genes shown in (A).

(C) mRNA expression of PEG10 during NE transdifferentiation in the LTL331 sys

(D) RNA-sequencing (RNA-seq)-derived expression of PEG10 in primary prostat

nomas treated with neo-adjuvant hormone therapy (NHT).

(E) PEG10 protein expression in the LTL331 system. Cx, castration.

(F) PEG10 and CHGA back-to-back protein expression in clinical specimens sho

(G) Clinical progression of the LTL331 index patient to NEPC. The left panel show

establishment of the LTL331 system. The right images show recent developme

progressed to NEPC upon ADT, as predicted by the LTL331 model.

See also Figure S1.

C

demonstrated decreased PEG10 expression upon introduction

of wild-type TP53 into PC3 cells (Spurgers et al., 2006).

LTL331 harbored a single-copy loss of TP53 and a functional

C277G mutation in the remaining allele (Figure S3G), which

resulted in accumulation of stabilized non-functional TP53

(Figure S3I).

Overall, these data demonstrate that PEG10 is dynamically

regulated at distinctly different stages of NEPC development,

and that PEG10 protein isoforms are associated with hallmarks

of the malignant NEPC phenotype.

PEG10 Drives Cell Cycle Progression from G0/G1
To test the potential of PEG10 to be a therapeutic target in NEPC,

we evaluated the effect of PEG10 knockdown on PCa cell

growth. Both PEG10 transient knockdown using two indepen-

dent small interfering RNAs (siRNAs) and stable knockdown

using small hairpin RNA (shRNA) resulted in significant growth

suppression in PC3 and DU145 cells (Figures 4A and S4A). We

performed a bromodeoxyuridine (BrdU) incorporation assay

after cell-cycle synchronization by double-thymidine block using

PC3 cells with an intact RB1 pathway to evaluate the effect of

PEG10 knockdown on cell-cycle progression (Figures 4B and

S4B). We observed a significantly higher population of control

cells entering S phase early after cell-cycle release, compared

to PEG10 knocked-down cells, and most control cells had pro-

gressed to G2/M after 10 hr. Conversely, a significantly higher

population of PEG10 knocked-down cells remained in G0/G1

or exhibited cell-cycle delay compared to controls. Concurrent

protein expression analysis in the control cells showed that

phospho-RB1 (pRB1) peaked early (5 hr) after cell-cycle release,

and CCNE1, whose expression generally peaks at G0/G1 to

S phase, decreased smoothly as cells progressed to G2/M.

However, in PEG10 knocked-down cells, the pRB1 level was

lower or peaked later than controls, and a significantly higher

level of CCNE1 was expressed even 10 hr after cell-cycle

release, reflecting slower cell-cycle progression and delay in

exit fromG0/G1 (Figure 4C). In parallel, we also observed a delay

in exit from G0/G1 after PEG10 knockdown, when cells were

treated with paclitaxel, which blocks cells from exiting G2/M to

re-enter G0/G1 (Figure S4C). Interestingly, we noted that tran-

sient PEG10 knockdown induced significantly higher expression

of key cell-cycle-dependent kinase inhibitors CDKN1A (p21) and

CDKN1B (p27) than observed in controls. CDK2 expression was
Highly Expressed in Clinical NEPC

a. The most significant genes are annotated with their predominant function,

s in (A), but genes are only plotted if upregulated by 12weeks post-castration in

EG10 is the most upregulated significant gene, and the plot is notable for the

tem, highlighting the biphasic pattern.

e tumors, showing increased expression in NEPC tumors and in adenocarci-

wing high intensity of PEG10 expression in NEPC foci.

s serum PSA over time from the patient whose prostatectomy tissue led to the

nt of NEPC in this patient, who initially recurred with AR-driven disease but
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inversely correlated with CDKN1A and CDKN1B, instead mirror-

ing the changes observed in pRB1 (Figure 4C). CDK4/6 expres-

sion remained unchanged (data not shown). This suggests that

PEG10 knockdown affects cell-cycle progression through upre-

gulation of CDKN1A and CDKN1B.

Next, we evaluated the effects of forced PEG10 overexpres-

sion on cell growth. Given the potential for the different protein

isoforms of PEG10 to possess distinct biological functions,

we created three different constructs expressing: (1) RF1b

only; (2) RF1b/2 with an active protease domain (capable of

generating both CNFs); and (3) RF1b/2 with an inactive protease

domain (note that constructs 2 and 3 cannot express RF1b

because ofmodification of the frameshift sequence and skipping

of the first STOP codon; see Figure S2). We transiently overex-

pressed each of these different PEG10 isoform constructs in

DU145 cells. Since DU145 cells harbor mutations in TP53

and RB1, PEG10 overexpression in this cell line closely mimics

the molecular landscape in clinical NEPC. In this context, we

found that the protease mutant form of RF1b/2 significantly

promotes growth. Growth was also promoted, but to a lesser

extent, when protease active RF1b/2 (which expresses less

RF1b/2 compared to protease mutant because of active self-

cleavage) was expressed, indicating that growth is promoted

primarily by the RF1b/2 isoform in a dose-dependent manner

(Figure 4D). Overexpression of protease mutant RF1b/2 pro-

moted transition from G0/G1 to S phase of the cell cycle, as

evidenced by more cells entering S phase at an early time point

after release from synchronization (Figure S4D). This construct

also led to the downregulation of CDKN1B and upregulation of

CCND1, further reflecting accelerated cell-cycle (Figure 4E).

Growth promotion by RF1b/2 was also observed in 293T cells,

which have inactivated TP53 and RB1 (Figure S4E). The iso-

form-specific effect of RF1b/2 on cell growth was also confirmed

by a rescue experiment using siRNA-resistant overexpression

plasmids, where different PEG10 isoforms were re-expressed

in DU145 cells after PEG10 transient knockdown (Figure S4F).

These observations are compatible with the fact that PEG10 in-

hibition also decreases the growth of LNCaP cells, which ex-

press RF1b/2 but not RF1b (Figure S4H). However, interestingly,

when the RF1b/2 isoform was transiently overexpressed in

LNCaP, which has wild-type TP53, there was no growth promo-

tion; instead, TP53 expression was induced (Figures 4F and
Figure 3. Dynamic Regulation of PEG10 Isoform Expression

(A) PEG10mRNA expression in LNCaP cells after androgen pathway inhibition or t

serum; Enza, enzalutamide). Values are normalized by b-actin (ACTB) and expre

(B) PEG10 promoter activity after AR pathway inhibition or treatment (treat) with

(C) ChIP assay demonstrating AR occupancy at the PEG10 promoter in LNCaP

The PSA promoter region (harbors a known AR-binding site) was used as a positi

**p < 0.01.

(D) Expression of E2F1 in NEPC compared to adenocarcinoma (Adeno).

(E) Heatmap showing the expression pattern of genes that constitute theRB1 loss

of the signature only in NEPC tissue.

(F) Schematic of PEG10 mRNA and protein domains (left) and immunoblots (right

lines. 60 mg of protein was loaded for LNCaP, and 20 mg was loaded for DU145 an

with enzalutamide or R1881 is also shown. Although RF1b/2 is expressed in LNCa

DU145 and PC3 and, therefore, hardly visible on the left panel. Conversely, RF1

(G) Expression of different PEG10 protein isoforms and E2F1 in the LTL331 mod

See also Figures S2 and S3.
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S4G), indicating that the effect of excess RF1b/2 is counterbal-

anced by wild-type TP53. Consistent with these data, when

LNCaP cells were stably transfected with wild-type (full-length)

PEG10, overexpression of PEG10 functioned as an oncogenic

signal, inducing tumor suppressors. The cell-cycle-promoting

effect of PEG10 that was characterized by increased pRB1

and CCND1 and decreased CDKN1B was matched by marked

induction of CDKN2A (p14 and p16), TP53, and CDKN1A, result-

ing in decreased cell growth overall (Figure S4I). Furthermore,

when PEG10 was stably overexpressed in LNCaP cells with

TP53 knockdown, cell growth was increased (Figure S4J). Taken

together, these data indicate that the PEG10 RF1b/2 isoform in

particular, which can promptly regulate its expression by active

self-cleavage, contributes to cell-cycle progression through

downregulation of CDKN1B and that this, in turn, acts as a

potent oncogenic signal that cannot be compensated by the

induction of tumor suppressor expression in TP53- and RB1-

defective NEPC.

Finally, we examined whether knockdown of PEG10 affects

in vivo tumor growth. PC3 cells with stable knockdown of

PEG10 showed significantly reduced growth, compared to con-

trols, when subcutaneously implanted in nude mice (Figure 4G).

Consistent with PEG10’s role in cell-cycle progression, there

was a statistically significant reduction in Ki-67 score in PEG10

knocked-down tumors (Figure 4H). Interestingly, although all

mice in the control group harbored tumors (n = 10), only 50%

(5/10) of those in the PEG10 knocked-down group developed

tumors, indicating the potential involvement of PEG10 in tumor

cell invasion and establishment.

PEG10 Regulates Snail Expression via TGF-b Signaling
and Promotes PCa Invasion
Clinical NEPC is characterized by high invasiveness and meta-

static potential (Beltran et al., 2014). In four PCa datasets

(Chandran et al., 2007; Grasso et al., 2012; Tomlins et al.,

2007; Varambally et al., 2005), we found a significant association

of PEG10mRNA upregulation with metastatic tumors compared

to benign and primary tissue (Figure S5A). Given the role of

PEG10 in placental development (Ono et al., 2006), where inva-

sion of maternal tissue is a fundamental step, we evaluated

whether PEG10 knockdown affects the invasive capability of

PCa cells. Using a Matrigel chamber, we observed a significant
reatment with R1881, as measured by real-time qPCR (CSS, charcoal-stripped

ssed as means ± SD.

R1881 as measured by luciferase assay (mean ± SD). IgG, immunoglobulin G.

cells upon treatment with R1881 and reversal with enzalutamide treatment.

ve control. AR occupancy is expressed as percentage of input ± SD. *p < 0.05.

signature in the LTL331model and other PCa specimens, showing upregulation

) demonstrating the expression of different PEG10 protein isoforms in PCa cell

d PC3 cells. Expression of different PEG10 isoforms upon treatment of LNCaP

P as shown in the right panel, the expression is significantly lower compared to

b is not detectable in LNCaP, even with a very long exposure.

el. Cx, castration.
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Figure 4. PEG10 Promotes Cell Proliferation in PCa Cell Lines

(A) Reduced cell growth after PEG10 knockdown by siRNA in PC3 (left panel) and DU145 (right panel) cells, as measured byWST-8 assay. Values are normalized

by absorbance on day 0 and expressed as mean ± SD. *p < 0.01. **p < 0.001. Inset immunoblots confirm target knockdown. siCtrl, control.

(B) Cell-cycle analysis using BrdU and 7AAD afterPEG10 knockdown, showing delay in cell-cycle progression. Cell cycle was initially synchronized (syn) at G0/G1

with double-thymidine block and then released and analyzed at the indicated time points after release. The bar represents the distribution of cell population in

each phase of cell cycle.

(legend continued on next page)
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decrease in cell invasion after PEG10 knockdown in both PC3

and DU145 cells (Figures 5A and S5B). This was particularly

interesting, since PEG10 has been reported to directly interact

with multiple receptors of the transforming growth factor b

(TGF-b) family (Lux et al., 2010), a family known to play an

important role in PCa invasion and metastasis. Consequently,

we used a growth-factor-reduced Matrigel chamber to

demonstrate that PC3 cell invasion was significantly increased

with TGF-b treatment but showed no change after PEG10

knockdown (Figure 5B). We observed a similar trend in cell

migration after TGF-b treatment, as measured by a scratch

assay (Figure S5C).

These data suggested a potential for PEG10 to play a role in

canonical TGF-b pathway activation. Indeed, after TGF-b treat-

ment, we observed significantly more activation of the canonical

TGF-b pathway in control cells compared to PEG10 knockdown,

as evidenced by increased SMAD2 and SMAD3 phosphorylation

and, in a separate assay, increased SBE-4 luciferase reporter

activity (Figures S5D and S5E). Although TFG-b-mediated phos-

phorylation of SMAD2 and SMAD3 can be associated with

decreased cell proliferation (Wilding et al., 1989), the net effect

of overexpressing all PEG10 isoforms is increased cell prolifera-

tion, suggesting that any growth inhibitory effect is countered

(Figure S5F). Of more relevance to the invasive NEPC pheno-

type, phosphorylation of SMAD2 and SMAD3 are also reported

to induce expression of sentinel genes associated with invasion

andmotility, includingmembers of the Snail, Zeb, and Twist fam-

ilies (Brandl et al., 2010; Lamouille et al., 2014; Smith et al., 2009).

Interestingly, these families are typically associated with epithe-

lial mesenchymal transition (EMT) (Peinado et al., 2007), and

although the phenotype of NEPC is distinct from that of mesen-

chymal cells, our data raised the possibility of an overlap in terms

of invasion mechanisms. In partial support of this hypothesis, we

observed clear upregulation of SNAI1 and ZEB1 in LTL331R

versus LTL331 and in clinical NEPC compared to adenocarci-

noma; note that other typical EMTmarkers, including E-cadherin

(CDH1) and vimentin (VIM), were unchanged (Figures 5C, S5G,

and S5H). Furthermore, TGF-b treatment of PC3 cells induced

significant mRNA and protein expression of SNAI1 and ZEB1

under control conditions but not after PEG10 knockdown (Fig-

ures 5D, 5E, and S5I). This differential between control and

PEG10 knockdown after TGF-b treatment was also apparent

after short-term treatment (<24 hr) using a higher dose of

TGF-b (Figure S5J), but only at the protein level, suggesting

that there exist multiple levels of association between PEG10,

TGF-b, and SNAI1/ZEB1. We performed a rescue experiment
(C) Immunoblots showing changes in G0/G1-related genes after cell-cycle release

points after cell-cycle release from G0/G1 synchronization.

(D) Immunoblots demonstrating transient overexpression of different PEG10 isofo

cells measured by WST-8 assay (right). Values are normalized by absorbance on

(E) Expression of cell-cycle-related genes in DU145. Robust expression of TP53

(F) Effect of transient overexpression of different PEG10 isoforms in LNCaP cells

TP53 wild-type cell line, as measured by WST-8 assay. Values are normalized b

expression is induced after transfection of RF1b/2 protease mutant, and other c

(G) Growth curves of subcutaneous xenograft tumors from PC3 subclones infec

number of animals developing tumors/total number of animals injected in each g

(H) PEG10 and Ki-67 staining of representative PC3 xenograft tumors. Values ar

See also Figure S4.
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using siRNA-resistant PEG10 isoforms to determine which iso-

form was responsible for promoting invasion. On the back-

ground of PEG10 knockdown, only re-introduction of PEG10

RF1b isoform was sufficient to restore SNAI1 expression (Fig-

ure 5F) and TGF-b-induced invasion (Figures 5G and S5K). The

association of PEG10 with SNAI1 and ZEB1 expression was

also observed in the tumor tissue samples of mouse xenografts

implanted with either control or PEG10 knocked-down PC3 cells

(Figure S5L).

DISCUSSION

This study identified the placental gene PEG10 as a driver and

potential therapeutic target for NEPC, a poorly understood and

lethal disease. Importantly, PEG10 promotes the invasive and

proliferative phenotype of NEPC cells, and its function is inti-

mately linked to RB1 and TP53 loss, the genomic hallmarks

of NEPC.

The development of novel therapeutic strategies for NEPC is

complicated by the similarity of NEPC expression signatures to

those of neuronal lineages as well as the logistical difficulties of

studying clinical metastatic NEPC tissue. Previous studies

focused on the terminal NEPC phenotype, where neuronal

gene expression can overwhelm attempts to identify malignant

drivers and inform little about earlier development. Our strategy

leveraged a unique patient-derived xenograft model to investi-

gate the development of NEPC, identifying gene expression pro-

grams associated with cell survival and dedifferentiation.

Although ‘‘transient’’ programs of expression are likely to have

mechanistic relevance, we focused on the ‘‘persistent’’ genes

(those that were also highly expressed in terminal NEPC), for

the sake of diagnosis and targeting but also for ease ofmodeling.

PEG10 was the most upregulated gene during transdifferentia-

tion, and typical NEPC markers were massively underrepre-

sented in the persistent gene set, conferring implications for

future work on biomarker development and early diagnosis of

NEPC. Remarkable validation for our xenograft model can be

drawn from the subsequent development of PEG10-positive

NEPC in the original patient, whose initial adenocarcinoma pros-

tatectomy specimen led to the model’s establishment.

Among its human counterparts, PEG10 is highly unusual, pos-

sessing two start codons and two reading frames controlled by

a �1 ribosomal frameshift signal permitting ‘‘skipping’’ of a

stop codon (Clark et al., 2007). This complexity is inherited

from a retrotransposon ancestor, and although transposon abil-

ity was lost in the past 120million years, PEG10 retains the ability
inPEG10 knocked-down cells. Cell lysates were collected at the indicated time

rms in DU145 cells (left) and the effect of each isoform on the growth of DU145

day 0. Values are expressed as mean ± SD. *p < 0.01. **p < 0.001.

is due to mutated non-functional protein.

(left), showing that RF1b/2 has a negative effect on cell growth in this RB1 and

y absorbance on day 0. *p < 0.05. **p < 0.01. The right panel shows that p53

ell-cycle-related genes are unchanged. Values are expressed as mean ± SD.

ted with control or PEG10 shRNAs. The numbers in parentheses indicate the

roup. The values are expressed as mean ± SEM.

e expressed as mean ± SEM. **p < 0.01.
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Figure 5. PEG10 Promotes PCa Cell Invasion
(A) Representative images (left) from an invasion assay after siRNA PEG10 knockdown. The number of invading cells from four different microscopic fields is

expressed as mean ± SD in the right panel. *p < 0.05 (compared to siCtrl [control]).

(legend continued on next page)
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to self-cleave, in an apparently homologous manner, to HIV.

PEG10 is required for placental development, and there is

currently intense interest in the reactivation of placental and

developmental genes in cancer, given the inherently ‘‘onco-

genic’’ tissue invasion and immune evasion properties of the

placenta (Rousseaux et al., 2013). Cancer cells under treatment

stress must reprogram their transcriptome to express new bio-

logical properties and adapt to a different microenvrinoment,

and the reactivation of placental genes offers an attractive solu-

tion. Interestingly, PEG10 is also maternally imprinted (paternally

expressed). Imprinting is tightly associated with placental and

embryonic genes and is only found in therian mammals; in

fact, there are <50 known imprinted genes in humans, several

of which are retrotransposon derived (Hamed et al., 2012; Mor-

ison et al., 2005). Paternally expressed genes (e.g., PEG10)

tend to be associated with growth promotion, while maternally

expressed genes tend to limit growth (Moore and Haig, 1991).

As such, maternally imprinted placental genes have clear onco-

genic characteristics. Indeed, among the 13,497 cancer samples

with copy-number data on the cBioPortal for Cancer Genomics,

there are only seven cases with PEG10 deletion.

PEG10 showed a distinct biphasic expression pattern during

NEPC development, regulated by two distinct mechanisms

and closely associated with two conceptual steps of NEPC

phenotype acquisition: (1) adaptive response (to survive) and

(2) cell proliferation. We report that PEG10 is AR repressed,

but under the stress of AR inhibition, cancer cells must express

survival genes in a reversible manner. Therefore, as PEG10

expression rapidly rises during AR inhibition, the pro-proliferative

PEG10 RF1b/2 isoform is self-cleaved, presumably to slow cell-

cycle and metabolic requirement. PEG10 has an established

anti-apoptotic role in hepatocellular carcinoma, and together,

these data suggest that the cleavage products (CNF and the

CNF2 reported here) may also play an active part in cell survival.

Interestingly, the long terminal repeat (LTR) sequences of retro-

transposons are reportedly stress responsive, and although the

LTRs of PEG10 are not conserved, it is possible that some func-

tional elements remain. Cancer cells surviving under treatment

stress must inherit or gain beneficial genetic or epigenetic aber-

ration to allow the resumption of proliferation. Recent evidence

suggests RB1 and TP53 loss as important steps in this process,

but their functional relevance to transdifferentiation was unclear.

Our data suggest that these tumor suppressor pathways overlap

during NEPC development, as PEG10 is directly regulated by

E2F1 (which is overexpressed in NEPC) and can amplify the

effect of E2F1 on cell cycle in tumors with RB1 and TP53 loss.

Deregulation of PEG10 RF1b/2 induces TP53 (another sign of
(B) Invasion assay showing effect of PEG10 knockdown in PC3 cells upon treatme

and then seeded in Growth Factor Reduced Matrigel invasion chambers.

(C) Microarray-derived expression of select master regulators of invasion during

(D) Expression of SNAI1, as measured by real-time qPCR, after treatment of con

time. Values are normalized by ACTB and expressed as mean ± SD. *p < 0.05.

(E) Protein expression of select master regulators of invasion associated with the

(F) Immunoblots showing rescue of ZEB1 and SNAIL expression when PEG10 k

expressing plasmids. Cells were sequentially treated with siRNA- and PEG10-ex

(G) Invasion assay, as described in (B), conducted after the rescue experiment s

expressed as mean ± SD. *p < 0.05.

See also Figure S5.
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an oncogene), but on the background of TP53 loss, it leads to

downregulation of major cell-ycle-dependent kinase inhibitors

CDKN1A and CDKN1B. Furthermore, aside from their well-

documented function through pRB1, CDKN1A and CDKN1B

can affect cell cycle directly by inhibiting E2F1 even in the

context of RB1 loss (Dimri et al., 1996).

PEG10 has been reported to interact directly with members of

the TGF-b receptor family. In particular, co-expression of ALK1

and PEG10 (RF1a) in COS-1 and CHO-K1 cells resulted in cell

spreading that resembled neuronal cell morphology (Lux et al.,

2010). However, in PCa cell lines, we did not observe any differ-

ence in the activation of ALK1 signaling mediated by SMAD1/5/8

upon PEG10 knockdown (data not shown), nor did we observe

typical neuronal-like cell morphology after PEG10 overexpres-

sion. Nevertheless, PEG10 expression in PCa cell lines affected

canonical TGF-b signaling mediated by ALK5, SMAD2, and

SMAD3 and resulted in differential expression of SNAI1, one of

the direct downstream mediators of the canonical TGF-b

signaling pathway. Though TGF-b is linked with EMT in PCa

and other cancers (Akhurst and Hata, 2012; Lamouille et al.,

2014; Shiota et al., 2012; Wu et al., 2014; Zavadil and Böttinger,

2005), typical EMT markers such as CDH1 and VIM were not

affected by PEG10 knockdown. Concordantly, in xenograft tu-

mors and human NEPC, ZEB1 and SNAI1 were upregulated in

the absence of typical EMT markers. NEPC and EMT are funda-

mentally different in terms of cell morphology, but these data

suggest a partial overlap in the genes mediating invasion and

migration between the two phenotypes. Interestingly, we also

demonstrate that high-dose (5 ng/ml) TGF-b treatment can

induce SNAI1 expression at the protein level within 24 hr without

changes in mRNA, suggesting that SNAI1 expression is also

regulated by non-canonical TGF-b signaling through Rac, Rho,

or other pathways, and that PEG10 has influence over these

pathways as well.

PEG10 is a potent growth promoter controlled by imprinting in

the placenta/embryo, silencing in adult tissue, and cleavage in

treatment-stressed cancer cells. However, when left unchecked

by deregulation to TP53 andRB1 pathways, PEG10 supports the

progression of lethal NEPC. The unique genomic features of

PEG10, together with its lack of expression in most adult tissues,

its oncogenic characteristics, and its intimate relationship with

aberrant cancer cells, make it a highly specific therapeutic target

for NEPC.
EXPERIMENTAL PROCEDURES

For additional details, see the Supplemental Experimental Procedures.
nt with TGF-b. Cells were pre-treated with or without 0.1 ng/ml TGF-b for 24 hr

NEPC transdifferentiation in the LTL331 model.

trol or PEG10-knocked-down PC3 cells with 0.1 ng/ml TGF-b for the indicated

TGF-b pathway.

nocked-down PC3 cells were treated with siPEG10-resistant PEG10-isoform-

pressing plasmids.

hown in (F). Number of invaded cells from four different microscopic fields are
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Patient-Derived Xenografts and Clinical Datasets

Twelve LTL331 patient-derived xenografts were raised in non-obese diabetic

(NOD) severe combined immunodeficiency (SCID) mice as previously

described (Lin et al., 2014). After host castration, tissue was harvested,

measured, fixed for histopathology, and processed for DNA/RNA analysis.

Copy number and gene expression microarray profiling was performed using

the Agilent SurePrint G3 Human CGH 8x60K platform and GE 8x60K Microar-

ray respectively, as previously described (Lin et al., 2014). We used RNA-

sequencing data from two clinical cohorts: Weill Medical College of Cornell

University (Beltran et al., 2011) and the Vancouver Prostate Centre. For the

latter, specimens were obtained following a protocol approved by the Clinical

Research Ethics Board of the University of BritishColumbia and the BCCancer

Agency (all patients signed a consent form approved by the ethics board).

Cell Culture and Transfection

PCa cell lines (LNCaP, DU145, and PC3) were obtained from the American

Type Culture Collection and maintained in RPMI 1640 (Thermo Scientific) sup-

plied with 10% FBS. All cell lines were tested and found to be free of myco-

plasma contamination. For transient loss-of-function studies, Silencer Select

siRNAs (Table S3) were transfected using Lipofectamine RNAiMAX Reagent

(Life Technologies) at a final concentration of 10 nM. Transient transfections

of cells with PEG10-expressing plasmids were performed using Lipofectin

(LNCaP) (Life Technologies) or DU145 Cell Avalanche (DU145, PC3) (EZ

Biosystems) reagents according to the manufacturer’s protocol. Transfection

efficiency was monitored using the hrGFP II expression vector. PEG10 stable

knocked-down cells were established by transfecting cells with PEG10 shRNA

Lentiviral Particles (Santa Cruz Biotechnology, sc-152158-V) according to the

manufacturer’s protocol andwere selected andmaintained in 2 mg/ml puromy-

cin-containing media. LNCaP cells with stable TP53 knockdown were pro-

vided by Dr. Xuesen Dong (Vancouver, BC, Canada).

Generation of PEG10 Expression Plasmids

Full-length PEG10 and PEG10 RF1b were amplified from PC3 cell line cDNA

using primers listed in Table S3 and cloned into BAMHI and XbaI restriction

sites of pcDNA3.1/hisA vector (Life Technologies). The PEG10 RF1b/2 vector,

which does not express RF1b, was created by mutating the �1 frameshift

sequence GGGAAAC to TGGCAAT, followed by the insertion of one

base (C). These changes result in disruption to the frameshift mechanism

and fixation of the reading frame to express only RF1/2, without changes in

amino acid sequence (Figure S2). The PEG10 RF1b/2 protease mutant vector

was constructed by site-directed mutagenesis using the QuikChange Light-

ening Kit (Agilent Technologies). For rescue experiments, PEG10 siRNA#1-

resistant PEG10 expression vectors were constructed for each of the

aforementioned vectors by introducing silent mutations to the PEG10 siRNA#1

target sequence. Transfection of siRNA-resistant plasmids was performed

24 hr after treatment by the indicated siRNAs. For stable overexpression,

full-length PEG10 was cloned into pLenti4/V5-DEST Gateway Vector (Life

Technologies). Lentiviral stocks were produced in 293T cells. Virus-containing

medium was collected at 48 hr post-transfection and filtered through a

0.45-mm filter. Lentiviral infection into LNCaP cells was performed by replac-

ing the medium with medium containing the virus and 8 mg/ml Polybrene

(Millipore), followed by centrifugation at 1,000 3 g for 30 min. Stably infected

cells were selected with Zeocin (200 mg/ml; Life Technologies). All plasmid

constructs were verified by Sanger sequencing.

Antibodies and Immunoblot

Antibodies used for immunoblots are listed in Table S4. Protein-transferred

polyvinylidene difluoride membranes were incubated with primary antibodies

overnight at 4�C, and bands were detected either by chemiluminescence us-

ing ECL Western Blotting Detection (GE Healthcare) or by fluorescence using

the Odyssey Imaging System (LI-COR Biosciences). In cases of low protein

abundance, Super Signal West Femto Maximum Sensitivity Substrate

(Thermo Scientific) was used.

Growth Assay and Cell Cycle Analysis

Cell growth was assessed by WST-8 assay using Cell Counting Kit 8 (Dojindo

Molecular Technologies) according to the manufacturer’s protocol. For loss-
934 Cell Reports 12, 922–936, August 11, 2015 ª2015 The Authors
of-function studies using siRNA, cells were first transfected with siRNA in

six-well plates, and then seeded into a 96-well plate at 1,000 cells per well

24 hr after transfection. Absorbance at 450 nm was measured at the indicated

time points after seeding, and values were normalized by baseline (4 hr after

seeding). For transient overexpression experiments, cells were seeded in

48-well plates, transfected, and measured for absorbance without re-seeding.

All experiments were performed in at least hexaplicates and repeated more

than three times. Cell-cycle distribution was analyzed by double staining

with BrdU and 7AAD using the FITC BrdU Flow Kit (BD Biosciences) according

to the manufacturer’s protocol. For the double-thymidine block, 24 hr after

transfection in six-well plates, cells were first treated with 2 mM thymidine

for 12 hr. After washing three times with PBS, cells were released from the

thymidine block by growth in normal media supplemented with 10% fetal

bovine serum (FBS) for 14 hr and then blocked again with 2 mM thymidine

for another 12 hr. Cells were finally released by adding back normal media after

PBS washes, and 1 mM BrdU was added 30 min prior to harvest at each time

point.

Cell Invasion and Migration Assays

Cell invasion was assessed using BD Biocoat Matrigel invasion chambers (BD

Biosciences). In brief, 5 3 104 cells were seeded in the upper chamber in a

serum-deprived condition, and the lower chamber was supplemented with

20% FBS. 16–24 hr after seeding, the upper chamber was scrubbed with a

cotton swab, fixed in methanol, and then stained with crystal violet. Invading

cells were counted visually at four different microscopic fields and averaged.

To examine the effect of TGF-b on cell invasion, cells were treated with or

without 0.1 ng/ml TGF-b for 24 hr and then seeded in Growth Factor Reduced

Bd Matrigel invasion chambers with or without TGF-b. For scratch assays,

cells were seeded to sub-confluence and then similarly pre-treated with

0.1 ng/ml TGF-b for 24 hr prior to scratch. Next, cells were grown in a

serum-deprived condition with or without TGF-b for 24–48 hr, and the degree

of wound healing was assessed. 0.3 mg/ml mitomycin C was also added after

the scratch to suppress cell growth.
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