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ABSTRACT

Motivation: RNA-Seq technology is promising to uncover many novel

alternative splicing events, gene fusions and other variations in RNA

transcripts. For an accurate detection and quantification of transcripts,

it is important to resolve the mapping ambiguity for those RNA-Seq

reads that can be mapped to multiple loci:417% of the reads from

mouse RNA-Seq data and 50% of the reads from some plant RNA-

Seq data have multiple mapping loci.

In this study, we show how to resolve the mapping ambiguity in the

presence of novel transcriptomic events such as exon skipping and

novel indels towards accurate downstream analysis. We introduce

ORMAN (Optimal Resolution of Multimapping Ambiguity of RNA-

Seq Reads), which aims to compute the minimum number of potential

transcript products for each gene and to assign each multimapping

read to one of these transcripts based on the estimated distribution of

the region covering the read. ORMAN achieves this objective through

a combinatorial optimization formulation, which is solved through well-

known approximation algorithms, integer linear programs and

heuristics.

Results: On a simulated RNA-Seq dataset including a random

subset of transcripts from the UCSC database, the performance

of several state-of-the-art methods for identifying and quantifying

novel transcripts, such as Cufflinks, IsoLasso and CLIIQ, is signifi-

cantly improved through the use of ORMAN. Furthermore, in an

experiment using real RNA-Seq reads, we show that ORMAN is

able to resolve multimapping to produce coverage values that are

similar to the original distribution, even in genes with highly non-

uniform coverage.

Availability: ORMAN is available at http://orman.sf.net
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1 INTRODUCTION

Massively parallel RNA sequencing (RNA-Seq) technologies are

replacing microarrays in determining the structure and dynamics

of the transcriptome. Analysis of RNA-Seq data helps to un-

cover many novel alternative splicing events, gene fusions and

other variations in RNA transcripts. Unfortunately, there are

many RNA-Seq reads that can be mapped to several loci equally

well, and it is of key importance to resolve their mapping ambi-

guity in order to perform a comprehensive and accurate analysis

of the whole RNA-Seq data.
There are several mappers that can align RNA-Seq reads to a

reference genome or previously known transcript sequences (Au

et al., 2010; Trapnell et al., 2009; Wang et al., 2010; Yorukoglu

et al., 2012). Owing to the presence of paralogs and homologous

regions within a gene, RNA-Seq mappers typically report a frac-

tion of multireads, i.e. reads that map to multiple loci on a refer-

ence genome. Based onTopHatmappings on the human reference

genome, �10% of human RNA-Seq reads are multireads.

Similarly, �17% of mouse and 50% of some plant RNA-Seq

reads are multireads (Li andDewey, 2011). The presence of multi-

reads complicates the downstream analysis such as determining

alternative splicing patterns, gene fusions and other variations.
The common practice for handling multireads is ignoring them

in the downstream analysis. This leads to inaccurate estimation

of the abundance of expressed transcripts (Li and Dewey, 2011;

Nicolae et al., 2011). A simple approach for determining the

exact genomic location of a multiread is ‘RESCUE’

(Mortazavi et al., 2008). Here, the initial gene expression

values are calculated based on the unique reads that map to

them. Each multiread is then assigned to the gene with the frac-

tion equal to the ratio between the gene’s initial expression value

and the total expression value of all genes that the multiread

maps to. A more complex approach based on expected

maximization (EM) (Pasaniuc et al., 2011) is designed to

handle mapping ambiguity of a read to two or more homologous

genes—for the purpose of determining the expression value of

each of these genes and not to determine or quantify isoforms.

Finally, RSEM (Li and Dewey, 2011), IsoEM (Nicolae et al.,

2011) and iReckon (Mezlini et al., 2013) are EM methods

based on statistical generative models for sequencing processes

to resolve mapping ambiguity.
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Many of the above approaches are designed specially for

estimating expression values of known/annotated isoforms.

Their performance is highly dependent on the completeness of

the isoform database in use. Furthermore, they cannot handle

alternative splicing events such as novel exon skipping, alterna-

tive 50 donor and 30 acceptor sites, intron retention and other

structural differences such as insertions or deletions. Some

recent computational approaches, in particular IsoLasso (Li

et al., 2011), CLIIQ (Lin et al., 2012) and Cufflinks (Trapnell

et al., 2010), can identify and quantify unknown isoforms

and certain types of transcriptomic variations. Unfortunately,

neither IsoLasso nor CLIIQ takes into account multireads, and

Cufflinks handles multireads through a simple RESCUE-based

approach.
In this article, we show how to resolve the multimapping am-

biguity in the presence of novel isoforms involving exon skip-

ping, intron retention and small indels towards accurate

downstream analysis. To be mathematically precise, we intro-

duce the notion of a partial transcript—a substring of a potential

transcript product of a gene, which satisfies certain conditions (a

formal definition is provided in the next section).
The objective of our multiread resolution approach, ORMAN

(Optimal Resolution of Multimapping Ambiguity of RNA-Seq

Reads), is (i) to compute the minimum number of partial tran-

scripts that cover all the multireads and (ii) to assign each multi-

read to one of these partial transcripts such that each partial

transcript is covered according to the estimated local distribu-

tion. We achieve the first objective approximately through a re-

duction to the standard set cover problem. We achieve the

second objective through an integer linear programming formu-

lation, which we handle using available integer linear program

(ILP) solvers such as CPLEX, or through greedy heuristics we

describe in this article.
We evaluate ORMAN on both simulated and real human

RNA-Seq datasets. For the first experiment, we generate

paired-end RNA-Seq reads from a random subset of transcripts

from the University of California, Santa Cruz (UCSC) database

with the expression distribution modelled after a real human

dataset. On this simulated data, we show that the performance

of state-of-the-art methods for identifying and quantifying

transcripts such as CLIIQ, Cufflinks and IsoLasso is typically
improved through the use of our multiread resolution approach.

Notably, when combined with IsoLasso or CLIIQ, ORMAN

gives the most accurate and comprehensive novel isoform detec-

tion and quantification pipeline available.
To evaluate ORMAN in a more ‘real world’ setting, we also

design an experiment using real RNA-Seq data from a cancer

patient (Lapuk et al., 2012). For this experiment, we implant

artificial genomic repeats into several genes and compare the
performance of ORMAN with that of RESCUE in resolving

the multireads mapping to these regions. We show that on this

dataset, the multiread assignment by ORMAN approximates the

original distributions quite well with a maximum relative error of

�0.3.

2 METHODS

Online databases such as the UCSC browser provide known transcripts

from specific gene regions. Let T ¼ fT1,T2, . . . ,Tpg be the set of known

transcripts from a gene region GR. Each transcript Ti is a string that can

be partitioned into ‘exonic segments’ EðTiÞ ¼ fE1,E2, . . . ,EjEðTiÞjg. We

define the ‘gene model’ GM implied by the set of transcripts T as an

ordered set of alternating substrings of the gene region called canonical

exons and canonical introns. Each exonic segment is a maximal substring

of a canonical exon, which is either completely present in a transcript or

excluded by that transcript. We refer the readers to Figure 1 for an illus-

tration of a gene model derived from known transcripts.

Given a read R mapping to a gene region GR, the partial transcript

PT supported by R is the shortest substring of the gene model that

completely covers R, which starts and ends with an exonic segment (or

a canonical intron in the case of intron retention). If there is a small

insertion or deletion (our method limits the size of each indel to 15nt)

between the read and the reference sequence, we introduce a modified

partial transcript with the corresponding indel. Figure 2 illustrates sev-

eral examples of partial transcripts derived from read mappings to a

gene model.

2.1 Combinatorial optimization formulation

The set of partial transcripts present in a sample can be derived from the

mappings of RNA-Seq reads to a reference genome with the supply of

transcript annotation or to a reference transcriptome. Depending on the

given mapping to the reference genome or transcriptome, our objective is

Fig. 1. A gene model, known transcripts (KT) of the gene model, a novel transcript (NT) derived from known transcripts and a novel transcript with

indels (NTID). Note that the latter may also be derived from known transcripts
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to assign each multiread to a single locus on the genome or a transcript.

We also need to determine the partial transcript that the multiread

should map to. This is done in two phases. In the first phase, we are

interested in the minimum number of partial transcripts that could

cover all the (multi)reads. In the second phase, we try to distribute

the (multi)reads to the set of partial transcripts from the first phase

such that the distribution of mappings for each partial transcript follows

the most likely distribution.

2.1.1 First phase Let C ¼ fPT1,PT2, ::,PTpg be the collection of all

the partial transcripts derived from mapping results. We also denote by

PTi (1 � i � p) the set of all reads that support the same partial transcript

PTi. In addition, each PTi is assigned a positive weight that is propor-

tional to the number of splicing events, i.e. exon skipping and intron

retention events with respect to the known transcript it is associated

with. For the partial transcripts without any variations with respect to

their associated known transcripts, the weight is 1. Each variation adds a

user-defined fixed value to this weight. Our default weight contribution of

exon skipping is 100 and of indel is 10 000. Indel events have high weight

due to their significantly low relative frequency (Karakoc et al., 2012).

Note that, in the case of paired-end reads, each end of a fragment may be

assigned to a different partial transcript. In that case, we assign such a

pair to the partial transcript formed by taking the union of the exons

from the partial transcripts on both ends. The weight of this new partial

transcript PTi is assigned as the sum of the weights of the two partial

transcripts it is composed of. We aim to determine the minimum-

weighted set of partial transcripts that can cover all the reads. This prob-

lem can be defined as an instance of the minimum-weighted set cover

problem, where sets are represented by the partial transcripts, and reads

represent set elements. Because the minimum-weighted set cover problem

is NP-hard, we use the standard greedy algorithm, which provides a

logarithmic factor approximation guarantee (Chvatal, 1979) to solve

this problem and obtain the set of partial transcripts used for the smooth-

ing step.

2.1.2 Second phase First, we give the formulation of the problem in

this phase in terms of an ILP below. We then show the computational

complexity of the problem. Finally, we show how to solve the problem in

practice.

Let C0 ¼ fPT1,PT2, ::,PTp0 g be a set of partial transcripts returned

from the first phase. For the partial transcript PTj 2 C
0, we aim to dis-

tribute multireads across the partial transcript such that the coverage

function of the reads in each partial transcript resembles the most

likely distribution. In the case of paired-end reads, we use both ends

for the coverage determination. For a read R, let SPT(R) be the set of

partial transcripts that R could map to.

Now let lenR be the read length and lenðPTjÞ be the length of the

partial transcript PTj. Let Rij (1 � i � jRj and 1 � j � jSPTðRiÞj) be in-

dicator variables, where Rij ¼ 1 means that we assign Ri to the partial

transcript PTj; otherwise Rij ¼ 0. We enforce that Ri can only be assigned

to one partial transcript:
X

fjjPTj2SPTðRiÞg

Rij ¼ 1 ð1Þ

Let NRjk (1 � j � p0 and 1 � k � lenðPTjÞ) be the number of reads

that cover position k in PTj. LetMultiðPTj, kÞ be the set of the multireads

that cover the position k in PTj. In similar manner, we define

UniqueðPTj, kÞ to be the number of reads that are uniquely mapped

and cover the position k in PTj. NRjk could be written as the summation

of the number of uniquely mapped reads and multireads that cover the

location k:

NRjk ¼ UniqueðPTj, kÞ þ
X

fijRi2MultiðPTj , kÞg

Rij ð2Þ

Let AVjk be the desired number of reads covering the position k in the

partial transcript PTj. Because we do not know the original distribution

of the reads, we approximate AVjk as follows. First, we find the multi-

mapping region Mk of PTj, which encompasses position k. Next, we

calculate the average coverage in the left and right neighbourhoods of

Mk (the size of each neighbourhood is set to h� lenR base pairs, where h

is a user-defined parameter). We use the calculated average values as

defining points for a line l, which approximates the desired function

AV. Then, AVjk is calculated as a value on the line l at the position k.

The rationale of this approach lies in the observation that coverage level

of a small region is often similar to the level of the immediately neigh-

bouring regions, even when the coverage varies significantly along the

entire gene (see Fig. 3).

Let dj � 0 denote the maximum difference between the desired number

of reads AVjk per position of partial transcript PTj and the observed

number of reads NRjk at any position k. We enforce the following

constraints:

�dj � AVjk �NRjk � dj ð3Þ

Our objective is to minimize the total difference:
X

1�j�p0

dj ð4Þ

The problem of smoothing of the distribution of reads along par-

tial transcripts, named SMOOTH, is provably hard. In addition, it is

unlikely to have a constant factor approximation algorithm for the

SMOOTH problem. The proofs are described in Supplementary

Materials.

2.1.3 Practical implementation The ILP formulation of ORMAN is

solved by IBM ILOG CPLEX. In practice, the running time of the

proposed ILP depends on the number of integer and non-integer vari-

ables and the number of constraints. The number of integer variables of

the provided ILP is proportional to the number of mappings of multi-

reads, which can be in the order of millions. Here we propose a strategy

to decompose the original problem into smaller subproblems such that

the solution of each smaller one is independent from each other. We

create a graph GPT ¼ ðVPT,EPTÞ among the partial transcripts returned

from the first phase, i.e. VPT ¼ C0. There is an edge between two partial

transcripts if there is a multiread r mapping to both of them. It is easy to

see that the solution of the ILP corresponding to each connected com-

ponent in GPT is independent from the solutions of other components.

Thus, we can obtain the solution for each component separately using

CPLEX. There may still exist some components that could not be solved

using CPLEX. In these cases, we propose a heuristic strategy as described

in the Supplementary Materials.

Fig. 2. Example reads mapping to the gene model of Figure 1. The partial transcripts derived from these reads are as follows: r1:{e1,e2}; r2:{e2,e3,e4};

r3:{e5,e6,e7}; r4:{e8ins,e9} and r5:{e9,e11}. Above, e8ins denotes exon 8 with the implied insertion
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3 EXPERIMENTAL RESULTS

We evaluate the performance of ORMAN on both simulated

and real datasets. On both types of data, we show that

ORMAN resolves mapping ambiguity of multireads accurately

and improves the performance of the leading transcript identifi-

cation and quantification tools.

3.1 Transcript identification and expression quantification

in simulated data

First, we focus on quantifying how much ORMAN improves

downstream analysis tools. We compare the performance of

the leading transcript identification and quantification tools by

(i) first running each tool without any pre- or postprocessing

(ORIGINAL), and (ii) then running each tool after preprocess-

ing the mappings by ORMAN.
Because there are no real world benchmark datasets that pro-

vide comprehensive and accurate information on all transcripts

and their abundance levels validated by wetlab techniques, we

use simulation data for this evaluation. [Even though the MAQC

project (Shi et al., 2006) used RNA-Seq technologies to quantify

the expression of a limited number of genes, a significant number

of these genes have a single isoform and have unique sequence

composition (Li and Dewey, 2011)].

3.1.1 Simulation data We generated RNA-Seq reads of human
transcripts with expression distribution similar to one derived

from a real dataset from the GEO database (accession number

GSM759513). This dataset comprises paired-end 50-bp RNA-

Seq reads of a prostate tissue from Illumina Human BodyMap

2.0 project (Shen et al., 2012). The reference transcriptome has

76 969 transcripts based on the UCSC database. We used

TopHat version 2.0.7—with the number of mismatches at most

2—to obtain the mappings of the RNA-Seq reads to the refer-

ence sequence (version hg19). We ran IsoEM to quantify the

expression profile of the UCSC reference transcriptome and

determined that 39 388 of them are highly expressed.

For the simulations, we assigned one random transcript out of

all 76 969 transcripts to each one of the expressed transcripts of

the prostate dataset. These randomly assigned transcripts repre-

sented the expression of 17 956 genes. We then set the expression

value of each random transcript to that of the prostate dataset

transcript it is associated with. We finally selected 10% of this

randomly selected set of the simulated transcripts for the pro-

duction of novel transcripts; for each such transcript, we ran-

domly skip an exon.
To ensure this transcript is novel, we check whether it is highly

similar to other known transcripts. We consider a novel

transcript to be highly similar to a known transcript if they

have the same number of exons and their percentage sequence

similarity is 490%. The novel transcript is then assigned the

same abundance level as the original transcript.

We generated 80 million paired-end RNA-Seq reads of 75-bp

length from the chosen transcripts. The fragment length is deter-

mined based on the normal distribution with a mean of 250bp

and a standard deviation of 25bp. Each transcript received a

number of reads proportional to its predetermined expression

level, and each read was picked uniformly at random over all

possible starting positions of the transcript. We then randomly

introduced sequencing errors in the generated reads according to

sequencing error model described in Dohm et al. (2008). This

model places the majority of mismatch errors towards the 30-end

of the reads. The error percentage per base was set to be 1%. We

used TopHat with the above settings to map the generated reads

to the reference genome. Approximately 4% of the generated

reads had multiple mapping loci.

3.1.2 Performance evaluation Our performance evaluation is

based on three tools: Cufflinks (version 2.0.2), IsoLasso (version

2.6.0) and CLIIQ (version 0.1.0.2). Cufflinks uses a modified

rescue strategy to resolve multireads, whereas the latter two are

not capable of resolving multimappings. We run CLIIQ in both

its standard mode, where it selects the minimum possible number

of isoforms, which minimizes quantification errors, and prefer-

ence mode, where it prefers known isoforms when there are mul-

tiple candidate solutions (abbreviated as CLIIQ_pref below). To

measure the relative performance of these tools, we provided the

complete UCSC gene annotations and disallowed any novel

splice sites while allowing novel exon skipping and intron reten-

tion events.

The expression values of transcripts are measured in fragments

per kilobase per million mapped reads. For each transcript, we

define the ‘relative quantification error’ produced by a given tool

as follows. (i) If the known expression value of the transcript is e

and the expression value of the transcript reported by the tool is

ê, then the relative quantification error is je� êj=e. (ii) If the tool
reports a transcript that is not among the simulated expressed

transcripts, the relative quantification error is þ1. (iii) If the

tool misses a known expressed transcript, the relative quantifica-

tion error is 1. Following (Li and Dewey, 2011; Nicolae et al.,

2011), we first investigate the proportion of transcripts whose

relative quantification error is above a threshold.

For each tool, we also compare how ORMAN affects its per-

formance on detecting novel isoforms. The novel isoforms in our

simulation generate reads that are incompatible to any known

gene annotations. For existing mapping ambiguity resolving

Fig. 3. The read distribution of gene USP5 taken from a real RNA-Seq dataset (see Section 3.2 for details). Although the overall sequence coverage

varies significantly along the gene, a small region often coincides well with its neighbourhood
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tools that require the full list of known transcripts, these reads

might be discarded; hence, novel isoforms with multireads may

not be detected. On the other hand, ORMAN allows such reads

to be used in the solution. In our experiments, all three tools

detect more novel isoforms based on ORMAN mappings as

can be seen from Table 1.
In Figure 4, we see that ORMAN improves the performance

of IsoLasso and CLIIQ significantly in both modes, which, in

comparison with Cufflinks, return fewer incorrectly quantified

isoforms for smaller error thresholds. Overall, Figure 4 demon-

strates that the combination of ORMAN and CLIIQ_pref pro-

vides the best results.
We also report the performance of tools on genes that produce

a high proportion of multimapping reads separately. Here, we

focus on 3784 genes (expressing 7275 transcripts) to which

TopHat mapped reads have the top 20% highest mapping multi-

plicity (see later).
Figure 5 shows the proportion of transcripts whose relative

quantification error is above a threshold on this subset. As

before, ORMAN improves the performance of IsoLasso and

CLIIQ significantly in both modes, which are better compared

with that of Cufflinks.
Next, we consider the performance of each tool in novel iso-

form detection for those genes that produce multimapping reads.

First, we sort all expressed genes according to their mapping

multiplicity (i.e. the proportion of the reads that can be

mapped to such a gene, which can also be mapped to other

genes). Then for genes ranked in the top 10, 20, 30, 40 and

50%, we examine how each tool performs in detecting novel

isoforms. Figure 5 demonstrates that, in the case of novel iso-

forms, all tools benefit from ORMAN mappings. In addition,

for those genes whose multiplicity is in top 10% in the sample,

ORMAN performs particularly well.

3.2 Multimapping resolution in real RNA-Seq data

It has been known that real RNA-Seq experiments often suffer

from various biases resulting in a rather non-uniform coverage

across a gene model (Roberts et al., 2011; Wu et al., 2011).

Unfortunately, modelling of such complex biases in simulations

would be cumbersome. To overcome this problem, we design a

controlled experiment with real RNA-Seq reads. For this experi-

ment, we use a previously published RNA-Seq dataset with

51-bp Illumina paired-end reads sampled from a human prostate

cancer patient (Lapuk et al., 2012). On this dataset, we introduce

artificial repeats in 10 genes based on sequences of other genes.

By modifying the sequences of the original reads mapping to the

artificial repeats, yet keeping everything else intact, we essentially

create a multimapping dataset for which the true coverage dis-

tribution is known. We then evaluate ORMAN’s performance in

resolving these multireads.

The following section explains the experimental setup in detail.

In the next section, we elaborate on the experiment results.

3.2.1 Experimental setup First, we map the reads using TopHat
(version 1.3.2) to the reference sequence (hg19) and Ensembl

annotations (GRCh37.62). Next, we randomly select 10 ‘decoy’

genes according to the following rules:

(1) The gene is annotated to have a single transcript based on

the Ensembl annotations.

(2) The total gene length (i.e. the sum of all canonical exons) is

at least 2000 bp.

(3) The gene is sufficiently expressed in the sample, having an

average coverage4100.

(4) The gene is uniquely mappable (i.e. there are no multireads

mapping to the gene model).

(a) (b)

Fig. 4. Comparative performance of each tool and its enhanced version with ORMAN measured as the proportion of transcripts whose relative

quantification error is above a threshold, as a function of the threshold. We show results of three tools (ORIGINAL) as well as their ORMAN

enhanced versions of (a) all 17 956 expressed genes (left) and (b) 3148 genes containing novel transcripts (right)

Table 1. Number of novel isoforms correctly identified by each tool with

and without ORMAN

Cufflinks2 IsoLasso CLIIQ CLIIQ_pref

ORIGINAL 1043 1292 1513 1325

ORMAN 1055 1308 1533 1334
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Similarly, we randomly select 10 ‘replacement’ genes according

to the rules 2, 3 and 4 above. Within each replacement gene, we

select a 400-bp region to serve as an artificial repeat. This 400-bp

sequence is then used to replace the sequence of a region of the

same length in the decoy gene. In other words, in each decoy

gene, we create an artificial repeat for which the sequence is

taken from a randomly chosen replacement gene. The selected

genes and the repeat regions are given in Table 2.
In the next step, we identify the reads mapping to the coord-

inates coinciding with the artificial repeat region in each decoy

gene. The sequences of these reads are changed according to the

new sequence of the decoy gene. All other reads are kept the

same. The entire set of reads is then mapped to the new

genome reference and the original Ensembl annotations using

TopHat with the same parameters.

3.2.2 Evaluation In this experiment, we compare ORMAN

with the modified version of RESCUE as used in Cufflinks

(Mortazavi et al., 2008; Trapnell et al., 2010). This modified

version calculates the initial gene/transcript abundances first by

equally distributing the multireads to each gene they map to. In

the second phase, each multiread is distributed in proportion to

the relative abundance of each gene as computed in the first

phase.
Figure 6 shows the relative error of coverage in the artificial

repeat regions after resolution with ORMAN and RESCUE.

This measure is calculated as:

jcoriginal � cormanj

ctophat
ð5Þ

where coriginal, ctophat and corman are the original coverage, raw

coverage after the second TopHat mappings and coverage after

multiread resolution with ORMAN, respectively. The relative

error for RESCUE is defined similarly.
On genes APPBP2, CD164, PPM1H, RCOR1, RYBP,

SERPINB6, SSR2, TXNDC16, UQCRC2 and ZBTB42, we

see that ORMAN produces lower error values than RESCUE,

whereas in the rest of the genes, it produces a higher relative

(a) (b)

Fig. 5. Comparative performance of each tool and its enhanced version with ORMAN on selected genes that produce multireads, measured as the

proportion of transcripts whose relative quantification error is above a threshold, as a function of the threshold. We show results of three tools

(ORIGINAL) as well as their ORMAN enhanced versions for 3784 genes containing high ratio of multi-loci reads (left). We also examine the

performance of novel isoform detections for gene whose multiread ratio ranked as top 10–50% in the whole sample (right)

Table 2. The genes and the artificial repeat locations used in the experiments

Replacement Decoy

Gene Chromosome Strand Start End # of reads Gene Chromosome Strand Start End # of reads

ZBTB42 14 þ 105269519 105269918 1026 PPM1H 12 � 63041681 63042080 1839

NFE2L1 17 þ 46128078 46128477 3697 UBL3 13 � 30339161 30339560 1949

USP5 12 þ 6975253 6975652 931 BCL2L2 14 þ 23776979 23777378 708

CD164 6 � 109689719 109690118 9461 TXNDC16 14 � 52898046 52898445 2072

APPBP2 17 � 58522733 58523132 733 RCOR1 14 þ 103193777 103194176 902

SERPINB6 6 � 2948403 2948802 6203 UQCRC2 16 þ 21994419 21994818 1196

SCAMP2 15 � 75136401 75136800 2386 USP43 17 þ 9632438 9632837 838

UBE2K 4 þ 39780509 39780908 1724 MUL1 1 � 20827015 20827414 1108

SSR2 1 � 155978849 155979248 7319 RYBP 3 � 72426808 72427207 289

COPG 3 þ 128996147 128996546 6110 STK38 6 � 36462615 36463014 935

Note: ‘# of reads’ denotes the initial number of reads mapping to the 400-bp region that is used to introduce the artificial repeats.
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error. On the other hand, the relative error of ORMAN never

exceeds 0.3. Furthermore, a closer look on some of the genes

suggests that ORMAN is still able to reproduce the look of the

original distribution quite well despite the fact that RESCUE has

a lower relative error. Figure 7 illustrates two such genes. Note

that although both genes have a high variation in coverage, the

coverage distribution in the repeat region is close to the original

distribution after processing with ORMAN.

4 DISCUSSION

In this article, we introduce a combinatorial optimization formu-

lation for resolving mapping ambiguity of RNA-Seq reads.

Using a simulated RNA-Seq dataset on humans, we have

shown that ORMAN improves the performance of popular com-

putational tools in transcript identification and quantification,

especially for genes with novel isoforms. Furthermore, our ex-

periments based on real RNA-Seq reads suggest that the loca-

lized approach of ORMAN is able to approximate the original

read distribution of the multimapping regions even in genes with

highly variable coverage. Although ORMAN’s performance was

similar to that of RESCUE in our small-scale experiment, we

suspect that datasets that suffer from elevated level of sequencing

biases such as severe RNA degradation could benefit even more

from our approach.
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