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ABSTRACT

Motivation: RNA-Seq technology is promising to uncover many novel
alternative splicing events, gene fusions and other variations in RNA
transcripts. For an accurate detection and quantification of transcripts,
it is important to resolve the mapping ambiguity for those RNA-Seq
reads that can be mapped to multiple loci: >17% of the reads from
mouse RNA-Seq data and 50% of the reads from some plant RNA-
Seq data have multiple mapping loci.

In this study, we show how to resolve the mapping ambiguity in the
presence of novel transcriptomic events such as exon skipping and
novel indels towards accurate downstream analysis. We introduce
ORMAN (Optimal Resolution of Multimapping Ambiguity of RNA-
Seq Reads), which aims to compute the minimum number of potential
transcript products for each gene and to assign each multimapping
read to one of these transcripts based on the estimated distribution of
the region covering the read. ORMAN achieves this objective through
a combinatorial optimization formulation, which is solved through well-
known approximation algorithms, integer linear programs and
heuristics.

Results: On a simulated RNA-Seq dataset including a random
subset of transcripts from the UCSC database, the performance
of several state-of-the-art methods for identifying and quantifying
novel transcripts, such as Cufflinks, IsoLasso and CLIIQ, is signifi-
cantly improved through the use of ORMAN. Furthermore, in an
experiment using real RNA-Seq reads, we show that ORMAN is
able to resolve multimapping to produce coverage values that are
similar to the original distribution, even in genes with highly non-
uniform coverage.

Availability: ORMAN is available at http://orman.sf.net
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1 INTRODUCTION

Massively parallel RNA sequencing (RNA-Seq) technologies are
replacing microarrays in determining the structure and dynamics
of the transcriptome. Analysis of RNA-Seq data helps to un-
cover many novel alternative splicing events, gene fusions and
other variations in RNA transcripts. Unfortunately, there are
many RNA-Seq reads that can be mapped to several loci equally
well, and it is of key importance to resolve their mapping ambi-
guity in order to perform a comprehensive and accurate analysis
of the whole RNA-Seq data.

There are several mappers that can align RNA-Seq reads to a
reference genome or previously known transcript sequences (Au
et al., 2010; Trapnell et al., 2009; Wang et al., 2010; Yorukoglu
et al., 2012). Owing to the presence of paralogs and homologous
regions within a gene, RNA-Seq mappers typically report a frac-
tion of multireads, i.e. reads that map to multiple loci on a refer-
ence genome. Based on TopHat mappings on the human reference
genome, ~10% of human RNA-Seq reads are multireads.
Similarly, ~17% of mouse and 50% of some plant RNA-Seq
reads are multireads (Li and Dewey, 2011). The presence of multi-
reads complicates the downstream analysis such as determining
alternative splicing patterns, gene fusions and other variations.

The common practice for handling multireads is ignoring them
in the downstream analysis. This leads to inaccurate estimation
of the abundance of expressed transcripts (Li and Dewey, 2011;
Nicolae et al., 2011). A simple approach for determining the
exact genomic location of a multiread is ‘RESCUE’
(Mortazavi et al., 2008). Here, the initial gene expression
values are calculated based on the unique reads that map to
them. Each multiread is then assigned to the gene with the frac-
tion equal to the ratio between the gene’s initial expression value
and the total expression value of all genes that the multiread
maps to. A more complex approach based on expected
maximization (EM) (Pasaniuc er al., 2011) is designed to
handle mapping ambiguity of a read to two or more homologous
genes—for the purpose of determining the expression value of
each of these genes and not to determine or quantify isoforms.
Finally, RSEM (Li and Dewey, 2011), IsoEM (Nicolae et al.,
2011) and iReckon (Mezlini et al., 2013) are EM methods
based on statistical generative models for sequencing processes
to resolve mapping ambiguity.
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Many of the above approaches are designed specially for
estimating expression values of known/annotated isoforms.
Their performance is highly dependent on the completeness of
the isoform database in use. Furthermore, they cannot handle
alternative splicing events such as novel exon skipping, alterna-
tive 5 donor and 3’ acceptor sites, intron retention and other
structural differences such as insertions or deletions. Some
recent computational approaches, in particular IsoLasso (Li
et al., 2011), CLIIQ (Lin et al., 2012) and Cufflinks (Trapnell
et al., 2010), can identify and quantify unknown isoforms
and certain types of transcriptomic variations. Unfortunately,
neither IsoLasso nor CLIIQ takes into account multireads, and
Cufflinks handles multireads through a simple RESCUE-based
approach.

In this article, we show how to resolve the multimapping am-
biguity in the presence of novel isoforms involving exon skip-
ping, intron retention and small indels towards accurate
downstream analysis. To be mathematically precise, we intro-
duce the notion of a partial transcript—a substring of a potential
transcript product of a gene, which satisfies certain conditions (a
formal definition is provided in the next section).

The objective of our multiread resolution approach, ORMAN
(Optimal Resolution of Multimapping Ambiguity of RNA-Seq
Reads), is (i) to compute the minimum number of partial tran-
scripts that cover all the multireads and (ii) to assign each multi-
read to one of these partial transcripts such that each partial
transcript is covered according to the estimated local distribu-
tion. We achieve the first objective approximately through a re-
duction to the standard set cover problem. We achieve the
second objective through an integer linear programming formu-
lation, which we handle using available integer linear program
(ILP) solvers such as CPLEX, or through greedy heuristics we
describe in this article.

We evaluate ORMAN on both simulated and real human
RNA-Seq datasets. For the first experiment, we generate
paired-end RNA-Seq reads from a random subset of transcripts
from the University of California, Santa Cruz (UCSC) database
with the expression distribution modelled after a real human
dataset. On this simulated data, we show that the performance
of state-of-the-art methods for identifying and quantifying

transcripts such as CLIIQ, Cufflinks and IsoLasso is typically
improved through the use of our multiread resolution approach.
Notably, when combined with IsoLasso or CLIIQ, ORMAN
gives the most accurate and comprehensive novel isoform detec-
tion and quantification pipeline available.

To evaluate ORMAN in a more ‘real world’ setting, we also
design an experiment using real RNA-Seq data from a cancer
patient (Lapuk et al., 2012). For this experiment, we implant
artificial genomic repeats into several genes and compare the
performance of ORMAN with that of RESCUE in resolving
the multireads mapping to these regions. We show that on this
dataset, the multiread assignment by ORMAN approximates the
original distributions quite well with a maximum relative error of
<0.3.

2 METHODS
Online databases such as the UCSC browser provide known transcripts
from specific gene regions. Let T'= {7, T>, ..., T,} be the set of known

transcripts from a gene region GR. Each transcript 7 is a string that can
be partitioned into ‘exonic segments’ E(T;) = {Ey, Es, ..., Egry}. We
define the ‘gene model’ GM implied by the set of transcripts 7" as an
ordered set of alternating substrings of the gene region called canonical
exons and canonical introns. Each exonic segment is a maximal substring
of a canonical exon, which is either completely present in a transcript or
excluded by that transcript. We refer the readers to Figure 1 for an illus-
tration of a gene model derived from known transcripts.

Given a read R mapping to a gene region GR, the partial transcript
PT supported by R is the shortest substring of the gene model that
completely covers R, which starts and ends with an exonic segment (or
a canonical intron in the case of intron retention). If there is a small
insertion or deletion (our method limits the size of each indel to 15nt)
between the read and the reference sequence, we introduce a modified
partial transcript with the corresponding indel. Figure 2 illustrates sev-
eral examples of partial transcripts derived from read mappings to a
gene model.

2.1 Combinatorial optimization formulation

The set of partial transcripts present in a sample can be derived from the
mappings of RNA-Seq reads to a reference genome with the supply of
transcript annotation or to a reference transcriptome. Depending on the
given mapping to the reference genome or transcriptome, our objective is

———— Canonical Exons ———

ol

Gene Model

\ N

Known
Transcripts

Novel Transcript I R
Novel Transcript

with Indels

———

Fig. 1. A gene model, known transcripts (KT) of the gene model, a novel transcript (NT) derived from known transcripts and a novel transcript with
indels (NTID). Note that the latter may also be derived from known transcripts
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Fig. 2. Example reads mapping to the gene model of Figure 1. The partial transcripts derived from these reads are as follows: rl:{el.e2}; r2:{e2.,e3.e4};
r3:{e5,e6,e7}; r4:{e8",e9} and r5:{e9.el1}. Above, e8" denotes exon 8 with the implied insertion

to assign each multiread to a single locus on the genome or a transcript.
We also need to determine the partial transcript that the multiread
should map to. This is done in two phases. In the first phase, we are
interested in the minimum number of partial transcripts that could
cover all the (multi)reads. In the second phase, we try to distribute
the (multi)reads to the set of partial transcripts from the first phase
such that the distribution of mappings for each partial transcript follows
the most likely distribution.

2.1.1 First phase Let C = {PTy, PT>, .., PT,} be the collection of all
the partial transcripts derived from mapping results. We also denote by
PT; (1 < i < p) the set of all reads that support the same partial transcript
PT;. In addition, each PT; is assigned a positive weight that is propor-
tional to the number of splicing events, i.e. exon skipping and intron
retention events with respect to the known transcript it is associated
with. For the partial transcripts without any variations with respect to
their associated known transcripts, the weight is 1. Each variation adds a
user-defined fixed value to this weight. Our default weight contribution of
exon skipping is 100 and of indel is 10 000. Indel events have high weight
due to their significantly low relative frequency (Karakoc et al., 2012).
Note that, in the case of paired-end reads, each end of a fragment may be
assigned to a different partial transcript. In that case, we assign such a
pair to the partial transcript formed by taking the union of the exons
from the partial transcripts on both ends. The weight of this new partial
transcript PT; is assigned as the sum of the weights of the two partial
transcripts it is composed of. We aim to determine the minimum-
weighted set of partial transcripts that can cover all the reads. This prob-
lem can be defined as an instance of the minimum-weighted set cover
problem, where sets are represented by the partial transcripts, and reads
represent set elements. Because the minimum-weighted set cover problem
is NP-hard, we use the standard greedy algorithm, which provides a
logarithmic factor approximation guarantee (Chvatal, 1979) to solve
this problem and obtain the set of partial transcripts used for the smooth-
ing step.

2.1.2 Second phase  First, we give the formulation of the problem in
this phase in terms of an ILP below. We then show the computational
complexity of the problem. Finally, we show how to solve the problem in
practice.

Let C' = {PT\, PT>,..,PTy,} be a set of partial transcripts returned
from the first phase. For the partial transcript PT; € C’, we aim to dis-
tribute multireads across the partial transcript such that the coverage
function of the reads in each partial transcript resembles the most
likely distribution. In the case of paired-end reads, we use both ends
for the coverage determination. For a read R, let SPT(R) be the set of
partial transcripts that R could map to.

Now let leng be the read length and /len(PT;) be the length of the
partial transcript PT;. Let R; (1 <i < |R| and 1 <j < [SPT(R;)|) be in-
dicator variables, where R; = 1 means that we assign R; to the partial
transcript P7}; otherwise R; = 0. We enforce that R; can only be assigned
to one partial transcript:

R;y=1 (D
UIPT;€SPT(R))}

Let NRjy (1 <j<p’ and 1 <k < len(PT})) be the number of reads
that cover position k in PT;. Let Multi(PTj;, k) be the set of the multireads

that cover the position k in P7;. In similar manner, we define
Unique(PT}, k) to be the number of reads that are uniquely mapped
and cover the position k in PT;. NRj could be written as the summation
of the number of uniquely mapped reads and multireads that cover the
location k:

NRj. = Unique(PT}, k) + Z R; @
{i| Rie Multi( PT}, k))

Let AV be the desired number of reads covering the position & in the
partial transcript PT}. Because we do not know the original distribution
of the reads, we approximate 4V as follows. First, we find the multi-
mapping region M) of PTj, which encompasses position k. Next, we
calculate the average coverage in the left and right neighbourhoods of
M (the size of each neighbourhood is set to /1 x leng base pairs, where /
is a user-defined parameter). We use the calculated average values as
defining points for a line /, which approximates the desired function
AV. Then, AV is calculated as a value on the line / at the position k.
The rationale of this approach lies in the observation that coverage level
of a small region is often similar to the level of the immediately neigh-
bouring regions, even when the coverage varies significantly along the
entire gene (see Fig. 3).

Let d; > 0 denote the maximum difference between the desired number
of reads AV per position of partial transcript P7; and the observed
number of reads NRj at any position k. We enforce the following
constraints:

*d,‘ < AVj — NRy. < d/ (3)

Our objective is to minimize the total difference:

> g @

1=j=p'

The problem of smoothing of the distribution of reads along par-
tial transcripts, named SMOOTH, is provably hard. In addition, it is
unlikely to have a constant factor approximation algorithm for the
SMOOTH problem. The proofs are described in Supplementary
Materials.

2.1.3 Practical implementation — The ILP formulation of ORMAN is
solved by IBM ILOG CPLEX. In practice, the running time of the
proposed ILP depends on the number of integer and non-integer vari-
ables and the number of constraints. The number of integer variables of
the provided ILP is proportional to the number of mappings of multi-
reads, which can be in the order of millions. Here we propose a strategy
to decompose the original problem into smaller subproblems such that
the solution of each smaller one is independent from each other. We
create a graph Gpr = (Vpr, Epr) among the partial transcripts returned
from the first phase, i.e. Vpr = C'. There is an edge between two partial
transcripts if there is a multiread r mapping to both of them. It is easy to
see that the solution of the ILP corresponding to each connected com-
ponent in Gpy is independent from the solutions of other components.
Thus, we can obtain the solution for each component separately using
CPLEX. There may still exist some components that could not be solved
using CPLEX. In these cases, we propose a heuristic strategy as described
in the Supplementary Materials.
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Fig. 3. The read distribution of gene USP5 taken from a real RNA-Seq dataset (see Section 3.2 for details). Although the overall sequence coverage
varies significantly along the gene, a small region often coincides well with its neighbourhood

3 EXPERIMENTAL RESULTS

We evaluate the performance of ORMAN on both simulated
and real datasets. On both types of data, we show that
ORMAN resolves mapping ambiguity of multireads accurately
and improves the performance of the leading transcript identifi-
cation and quantification tools.

3.1 Transcript identification and expression quantification
in simulated data

First, we focus on quantifying how much ORMAN improves
downstream analysis tools. We compare the performance of
the leading transcript identification and quantification tools by
(1) first running each tool without any pre- or postprocessing
(ORIGINAL), and (ii) then running each tool after preprocess-
ing the mappings by ORMAN.

Because there are no real world benchmark datasets that pro-
vide comprehensive and accurate information on all transcripts
and their abundance levels validated by wetlab techniques, we
use simulation data for this evaluation. [Even though the MAQC
project (Shi ez al., 2006) used RNA-Seq technologies to quantify
the expression of a limited number of genes, a significant number
of these genes have a single isoform and have unique sequence
composition (Li and Dewey, 2011)].

3.1.1 Simulation data  We generated RNA-Seq reads of human
transcripts with expression distribution similar to one derived
from a real dataset from the GEO database (accession number
GSM759513). This dataset comprises paired-end 50-bp RNA-
Seq reads of a prostate tissue from Illumina Human BodyMap
2.0 project (Shen et al., 2012). The reference transcriptome has
76 969 transcripts based on the UCSC database. We used
TopHat version 2.0.7—with the number of mismatches at most
2—to obtain the mappings of the RNA-Seq reads to the refer-
ence sequence (version hgl9). We ran IsoEM to quantify the
expression profile of the UCSC reference transcriptome and
determined that 39 388 of them are highly expressed.

For the simulations, we assigned one random transcript out of
all 76 969 transcripts to each one of the expressed transcripts of
the prostate dataset. These randomly assigned transcripts repre-
sented the expression of 17 956 genes. We then set the expression
value of each random transcript to that of the prostate dataset
transcript it is associated with. We finally selected 10% of this
randomly selected set of the simulated transcripts for the pro-
duction of novel transcripts; for each such transcript, we ran-
domly skip an exon.

To ensure this transcript is novel, we check whether it is highly
similar to other known transcripts. We consider a novel

transcript to be highly similar to a known transcript if they
have the same number of exons and their percentage sequence
similarity is >90%. The novel transcript is then assigned the
same abundance level as the original transcript.

We generated 80 million paired-end RNA-Seq reads of 75-bp
length from the chosen transcripts. The fragment length is deter-
mined based on the normal distribution with a mean of 250 bp
and a standard deviation of 25bp. Each transcript received a
number of reads proportional to its predetermined expression
level, and each read was picked uniformly at random over all
possible starting positions of the transcript. We then randomly
introduced sequencing errors in the generated reads according to
sequencing error model described in Dohm et al. (2008). This
model places the majority of mismatch errors towards the 3'-end
of the reads. The error percentage per base was set to be 1%. We
used TopHat with the above settings to map the generated reads
to the reference genome. Approximately 4% of the generated
reads had multiple mapping loci.

3.1.2 Performance evaluation Our performance evaluation is
based on three tools: Cufflinks (version 2.0.2), IsoLasso (version
2.6.0) and CLIIQ (version 0.1.0.2). Cufflinks uses a modified
rescue strategy to resolve multireads, whereas the latter two are
not capable of resolving multimappings. We run CLIIQ in both
its standard mode, where it selects the minimum possible number
of isoforms, which minimizes quantification errors, and prefer-
ence mode, where it prefers known isoforms when there are mul-
tiple candidate solutions (abbreviated as CLIIQ_pref below). To
measure the relative performance of these tools, we provided the
complete UCSC gene annotations and disallowed any novel
splice sites while allowing novel exon skipping and intron reten-
tion events.

The expression values of transcripts are measured in fragments
per kilobase per million mapped reads. For each transcript, we
define the ‘relative quantification error’ produced by a given tool
as follows. (i) If the known expression value of the transcript is e
and the expression value of the transcript reported by the tool is
¢, then the relative quantification error is |e — é|/e. (ii) If the tool
reports a transcript that is not among the simulated expressed
transcripts, the relative quantification error is +oo. (iii) If the
tool misses a known expressed transcript, the relative quantifica-
tion error is 1. Following (Li and Dewey, 2011; Nicolae et al.,
2011), we first investigate the proportion of transcripts whose
relative quantification error is above a threshold.

For each tool, we also compare how ORMAN affects its per-
formance on detecting novel isoforms. The novel isoforms in our
simulation generate reads that are incompatible to any known
gene annotations. For existing mapping ambiguity resolving
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tools that require the full list of known transcripts, these reads
might be discarded; hence, novel isoforms with multirecads may
not be detected. On the other hand, ORMAN allows such reads
to be used in the solution. In our experiments, all three tools
detect more novel isoforms based on ORMAN mappings as
can be seen from Table 1.

In Figure 4, we see that ORMAN improves the performance
of IsoLasso and CLIIQ significantly in both modes, which, in
comparison with Cufflinks, return fewer incorrectly quantified
isoforms for smaller error thresholds. Overall, Figure 4 demon-
strates that the combination of ORMAN and CLIIQ_pref pro-
vides the best results.

We also report the performance of tools on genes that produce
a high proportion of multimapping reads separately. Here, we
focus on 3784 genes (expressing 7275 transcripts) to which
TopHat mapped reads have the top 20% highest mapping multi-
plicity (see later).

Figure 5 shows the proportion of transcripts whose relative
quantification error is above a threshold on this subset. As
before, ORMAN improves the performance of IsoLasso and
CLIIQ significantly in both modes, which are better compared
with that of Cufflinks.

Next, we consider the performance of each tool in novel iso-
form detection for those genes that produce multimapping reads.
First, we sort all expressed genes according to their mapping
multiplicity (i.e. the proportion of the reads that can be
mapped to such a gene, which can also be mapped to other
genes). Then for genes ranked in the top 10, 20, 30, 40 and

Table 1. Number of novel isoforms correctly identified by each tool with
and without ORMAN

Cufflinks2 IsoLasso CLIIQ CLIIQ_pref
ORIGINAL 1043 1292 1513 1325
ORMAN 1055 1308 1533 1334
(a) Overall Comparison

50%, we examine how each tool performs in detecting novel
isoforms. Figure 5 demonstrates that, in the case of novel iso-
forms, all tools benefit from ORMAN mappings. In addition,
for those genes whose multiplicity is in top 10% in the sample,
ORMAN performs particularly well.

3.2 Multimapping resolution in real RNA-Seq data

It has been known that real RNA-Seq experiments often suffer
from various biases resulting in a rather non-uniform coverage
across a gene model (Roberts et al., 2011; Wu et al., 2011).
Unfortunately, modelling of such complex biases in simulations
would be cumbersome. To overcome this problem, we design a
controlled experiment with real RNA-Seq reads. For this experi-
ment, we use a previously published RNA-Seq dataset with
51-bp Illumina paired-end reads sampled from a human prostate
cancer patient (Lapuk et al., 2012). On this dataset, we introduce
artificial repeats in 10 genes based on sequences of other genes.
By modifying the sequences of the original reads mapping to the
artificial repeats, yet keeping everything else intact, we essentially
create a multimapping dataset for which the true coverage dis-
tribution is known. We then evaluate ORMAN’s performance in
resolving these multireads.

The following section explains the experimental setup in detail.
In the next section, we elaborate on the experiment results.

3.2.1 Experimental setup  First, we map the reads using TopHat
(version 1.3.2) to the reference sequence (hgl9) and Ensembl
annotations (GRCh37.62). Next, we randomly select 10 ‘decoy’
genes according to the following rules:

(1) The gene is annotated to have a single transcript based on
the Ensembl annotations.

(2) The total gene length (i.e. the sum of all canonical exons) is
at least 2000 bp.

(3) The gene is sufficiently expressed in the sample, having an
average coverage >100.

(4) The gene is uniquely mappable (i.e. there are no multireads
mapping to the gene model).

Overall Comparison for Genes C: Novel Isoforms
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Fig. 4. Comparative performance of each tool and its enhanced version with ORMAN measured as the proportion of transcripts whose relative
quantification error is above a threshold, as a function of the threshold. We show results of three tools (ORIGINAL) as well as their ORMAN
enhanced versions of (a) all 17956 expressed genes (left) and (b) 3148 genes containing novel transcripts (right)
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Similarly, we randomly select 10 ‘replacement’ genes according
to the rules 2, 3 and 4 above. Within each replacement gene, we
select a 400-bp region to serve as an artificial repeat. This 400-bp
sequence is then used to replace the sequence of a region of the
same length in the decoy gene. In other words, in each decoy
gene, we create an artificial repeat for which the sequence is
taken from a randomly chosen replacement gene. The selected
genes and the repeat regions are given in Table 2.

In the next step, we identify the reads mapping to the coord-
inates coinciding with the artificial repeat region in each decoy
gene. The sequences of these reads are changed according to the
new sequence of the decoy gene. All other reads are kept the
same. The entire set of reads is then mapped to the new
genome reference and the original Ensembl annotations using
TopHat with the same parameters.

3.2.2 Evaluation 1In this experiment, we compare ORMAN
with the modified version of RESCUE as used in Cufflinks
(Mortazavi et al., 2008; Trapnell et al., 2010). This modified

Overall Comparison for Genes with High-ratio of Multiple-loci Reads
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version calculates the initial gene/transcript abundances first by
equally distributing the multireads to each gene they map to. In
the second phase, each multiread is distributed in proportion to
the relative abundance of each gene as computed in the first
phase.

Figure 6 shows the relative error of coverage in the artificial
repeat regions after resolution with ORMAN and RESCUE.
This measure is calculated as:

| Coriginat — Corman|
— )
Ctophat

where Coriginats Cophar aNd Copmay are the original coverage, raw
coverage after the second TopHat mappings and coverage after
multiread resolution with ORMAN, respectively. The relative
error for RESCUE is defined similarly.

On genes APPBP2, CDI64, PPMIH, RCORI, RYBP,
SERPINB6, SSR2, TXNDC16, UQCRC2 and ZBTB42, we
see that ORMAN produces lower error values than RESCUE,
whereas in the rest of the genes, it produces a higher relative

(b) Fraction of Novel Isoforms Detected for Genes with High Ratios of Multi-reads
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Fig. 5. Comparative performance of each tool and its enhanced version with ORMAN on selected genes that produce multireads, measured as the
proportion of transcripts whose relative quantification error is above a threshold, as a function of the threshold. We show results of three tools
(ORIGINAL) as well as their ORMAN enhanced versions for 3784 genes containing high ratio of multi-loci reads (left). We also examine the
performance of novel isoform detections for gene whose multiread ratio ranked as top 10-50% in the whole sample (rig