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Abstract

Background: Preclinical data suggest that TMPRSS2-ERG gene fusions, present in about 50% of prostate
cancers, may be a surrogate for DNA repair status and therefore a biomarker for DNA-damaging agents. To
test this hypothesis, we examined whether TMPRSS2-ERG status was associated with biochemical failure
after clinical induction of DNA damage following image-guided radiotherapy (IGRT).

Methods: Pretreatment biopsies from two cohorts of patients with intermediate-risk prostate cancer
[T1/T2, Gleason score (GS) < 8, prostate-specific antigen (PSA) < 20 ng/mL; >7 years follow-up] were
analyzed: (i) 126 patients [comparative genomic hybridization (CGH) cohort] with DNA samples assayed
by array CGH (aCGH) for the TMPRSS2-ERG fusion; and (ii) 118 patients [immunohistochemical (IHC)
cohort] whose biopsy samples were scored within a defined tissue microarray (TMA) immunostained
for ERG overexpression (known surrogate for TMPRSS2-ERG fusion). Patients were treated with IGRT with a
median dose of 76 Gy. The potential role of TMPRSS2-ERG status as a prognostic factor for biochemical
relapse-free rate (bRFR; nadir + 2 ng/mL) was evaluated in the context of clinical prognostic factors in
multivariate analyses using a Cox proportional hazards model.

Results: TMPRSS2-ERG fusion by aCGH was identified in 27 (21%) of the cases in the CGH cohort, and
ERG overexpression was found in 59 (50%) patients in the IHC cohort. In both cohorts, TMPRSS2-ERG
status was not associated with bRFR on univariate or multivariate analysis.

Conclusions: In two similarly treated IGRT cohorts, TMPRSS2-ERG status was not prognostic for bRFR,
in disagreement with the hypothesis that these prostate cancers have DNA repair defects that render them
clinically more radiosensitive. TMPRSS2-ERG is therefore unlikely to be a predictive factor for IGRT
response. Clin Cancer Res; 19(18); 5202-9. ©2013 AACR.
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Introduction

Chromosomal rearrangements have a critical role in
oncogenic events in prostate cancer. Tomlins and colleagues
reported a recurrent gene rearrangement involving the 5’
untranslated region of the androgen-regulated TMPRSS2
(transmembrane protease serine 2) gene with ETS (eryth-
roblast transformation specific) gene family members,
including ERG [v-ets erythroblastosis virus E26 oncogene
homolog (avian), chromosome 21q22.3] or ETVI (ets
variant 1, chromosome 7p21.3; ref. 1). ETS family members
are involved in multiple signaling pathways associated with
cancer formation and progression (2-4). About 50% of
clinically localized prostate cancers harbor TMPRSS2-ERG
gene fusions, leading to ERG overexpression (5). Newer
immunohistochemical (IHC) approaches using ERG-
specific antibodies have shown that ERG protein overex-
pression in situ is a sensitive and specific surrogate for the
presence of TMPRSS2-ERG gene fusion detected by FISH or
quantitative reverse transcriptase PCR (qRT-PCR; refs. 1,
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Translational Relevance

Improved patient stratification using novel genetic
prognosticators or response predictors could help
individualize prostate cancer therapies. Preclinical
studies have shown that TMPRSS2-ERG gene fusion,
leading to ERG overexpression, may be a biomarker of
DNA double-strand break (DSB) repair capacity with
potential implications for sensitivity to radiotherapy
or DNA-damaging modifying agents (e.g., PARP inhi-
bitors). Using two different techniques [array compar-
ative genomic hybridization (aCGH) and immunohis-
tochemistry (IHC)|, we did not observe that TMPRSS2-
ERG status (as assayed in pretreatment biopsies of
patients with intermediate-risk prostate cancer) is
prognostic for biochemical outcome after image-guid-
ed radiotherapy. These clinical results suggest that the
presence of a TMPRSS2-ERG fusion is not, de facto,
associated with a clinical DSB repair defect that leads
to prostate tumor cell radiosensitivity.

6-8). If the presence of a fusion, or ERG overexpression, is
associated with differential prognosis or treatment
response, this would have major implications for its clinical
use in a cancer that is diagnosed in more than 250,000 men
in North America each year (9).

Intermediate-risk prostate cancer is defined by National
Comprehensive Cancer Network (NCCN) as T1/T2-NO-
MO with a Gleason score (GS) 7 and prostate-specific
antigen (PSA) < 20 ng/mL or GS < 7 and PSA 10 to 20
ng/mL (10). Clinical outcomes are highly heterogeneous
within this risk category, with up to 30% to 40% of patients
failing therapy independent of treatment modality (11, 12).
Therefore, identification of additional prognostic factors
that could stratify these patients into more precise prog-
nostic or predictive subgroups based on individual tumor
genetics would be extremely valuable.

Studies addressing the relationship between TMPRSS2-
ERG gene fusions and prostate cancer aggression or clinical
outcome have provided conflicting results (13-18). How-
ever, in the largest cohort tested to date, ERG overexpression
(determined by IHC) was not prognostic for biochemical
recurrence following radical prostatectomy (19). This lack
of prognostic significance in surgery patients was confirmed
by a recent meta-analysis using biochemical recurrence and
disease-specific mortality as endpoints (20). However, the
role of TMPRSS2-ERG as a response modifier in patients
receiving modern era radiotherapy has not yet been
evaluated.

Precision radiotherapy delivered with image-guided
radiotherapy (IGRT) is an important modality for prostate
cancer treatment. Recent preclinical data suggest that that
TMPRSS2-ERG status may relate to DNA repair and radio-
therapy-induced DNA damage. Using FISH, androgen sig-
naling was found to induce proximity of the TMPRSS2 and
ERG genomicloci (both located on chromosome 21q22.2),

particularly following induction of DNA double-strand
breaks (DSB) by irradiation or inhibition of topoisomerase
II beta (TOP2B; refs. 21, 22). Other data support fusion
status associated with altered sensitivity to DNA-damaging
agents (23). Stable overexpression of TMPRSS2-ERG fusion
product in prostate cancer cells can alter radiosensitivity,
and TMPRSS2-ERG fusion status can render tumor cells
sensitive to PARP1 inhibition in vitro and in vivo (24). In the
latter study, the TMPRSS2-ERG fusion products interacted
in a DNA-independent manner with PARP1 and the cata-
lytic subunit of DNA protein kinase, a DSB repair protein.
The authors concluded that overexpression of the
TMPRSS2-ERG fusion induces DNA damage, which is
potentiated by PARP inhibition (PARPi) and leads to cell
death. This was similar to the cell death observed in PARPi-
treated cells defective in the homologous recombination
(HR) pathway of DSB repair.

Taken together, these preclinical data suggest that the
TMPRSS2-ERG status of primary prostate cancer may
reflect relative a priori DNA repair capacity and thus could
alter the therapeutic response to DNA-damaging agents,
including precision radiotherapy. If true, prostate cancer
gene fusion status could be predictive for treatment out-
come. We therefore tested the ability of TMPRSS2-ERG
status to predict outcome in patients with intermediate-
risk prostate cancer following clinically induced DSBs
using IGRT.

Materials and Methods

Patient cohorts and treatment delivery

We investigated TMPRSS2-ERG status in pretreatment
biopsies of patients with intermediate-risk prostate cancer
using 2 different methods in 2 different cohorts: (i)
TMPRSS2-ERG gene fusion assessed at the DNA level using
array comparative genomic hybridization (aCGH); or (ii)
ERG protein overexpression assayed by IHC. Both cohorts
included patients who completed curative radical radio-
therapy for histologically confirmed adenocarcinoma of the
prostate as part of prospective clinical studies approved by
the University Health Network Research Ethics Board and
registered (NCT00160979; ISRCTN64733264) in accor-
dance with the criteria outlined by the International Com-
mittee of Medical Journal Editors. This work followed the
REMARK recommendations for tumor marker prognostic
studies (ref. 25; Supplementary Table S1). The aCGH cohort
consisted of 126 evaluable patients; further details on the
assay technique and background tumor genetics for this
cohort have been described previously (26). Clinical char-
acteristics for both aCGH and IHC cohorts are presented
in Table 1. To create the IHC cohort, formalin-fixed, par-
affin-embedded (FFPE) pretreatment biopsies from 173
patients were used to construct a biopsy tissue microarray
(TMA). Post-array, the cohort was reduced to 118 evaluable
patients after a quality assurance protocol, which removed
patients if malignant cores could not be scored within the
histologic section; if the NCCN criteria of intermediate-risk
disease were not met (27); or if they lacked follow-up data
(see Fig. 1B).
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Table 1. Clinical characteristics of aCGH and
IHC treatment cohorts
IHC cohort aCGH cohort
(n =118) (n = 126)
n (%) n (%)
T score

T 43 (36%) 45 (36%)

T2 75 (63%) 81 (64%)
Gleason score

6 29 (24%) 31 (25%)

7 89 (74%) 95 (75%)
Pretreatment PSA

<10 79 (66%) 88 (70%)

>10 39 (33%) 38 (30%)
Median (range) 7.7 (1.3-19.6) 7.8 (0.9-19)

ADT 35 (29%) 33 (26%)

RT dose

60 Gy/20 fr 7 (6%) 12 (10%)

66 Gy/22 fr 4 (3%) 3 (2%)

75.6 Gy/42 fr 27 (23%) 33 (26%)

78 Gy/39 fr 4 (3%) 3 (2%)

79.8 Gy/42 fr 76 (63%) 75 (60%)
Mean equivalent dose®  76.4 Gy 76 Gy
Biochemical failures® 31 (26%) 55 (44%)
Deaths 12 (10%) 7 (5%)
Median FU, y 7.2 7.8
Range (0.33-12.2) (0.8-12.2)
Abbreviation: FU, follow-up; RT, radiotherapy.

#Mean equivalent dose was calculated using BED formula at
2 Gy daily fractions with an «/B ratio of 1.5 for tumor
response.

PAs defined by Phoenix criteria (PSA nadir + 2 ng/mL);
except an additional 5 patients in the aCGH cohort who
were pre-emptively treated with salvage ADT due to increas-
ing PSA posttreatment.

For both cohorts, patients underwent transrectal ultra-
sound (TRUS)-guided insertion of 3 intraprostatic gold
fiducial markers for radiotherapy planning and IGRT.
Research biopsies (2 for formalin fixation and 1 fresh frozen
in liquid N,) were taken during fiducial marker insertion.
Staging computed tomography (CT) and bone scans were
not routinely conducted. The clinical target volume (CTV)
encompassed the prostate gland alone. The planning target
volume (PTV) was defined by a 10-mm margin around the
CTV, except posteriorly where the margin was 7 mm. All
patients were treated with 6-field conformal or intensity-
modulated radiotherapy (IMRT) with image guidance. The
radiotherapy dose was variable within the 2 cohorts, so
doses were converted to biologically effective doses (BED)
with an assumed a/f of 1.5 (28). Dose details are presented
in Table 1 for both cohorts. Neoadjuvant and concurrent
hormonal therapy [androgen deprivation therapy (ADT)]
was used in 33 patients (26%) in theaCGH cohortand in 35
patients (29%) in the IHC cohort. This ADT consisted of

bicalutamide 150 mg daily for 3 months of neoadjuvant
treatment followed by a further 2 months as concurrent
treatment with radiotherapy (ISRCTN64733264; ref. 29).
Patients were followed at 6 monthly intervals after com-
pleting treatment with clinical examination and PSA testing.
Additional tests and the management of patients with
recurrent disease were at the discretion of the treating
physician. The median follow-up of surviving patients was
7.8 and 7.2 years following the start of radiotherapy for the
aCGH and IHC cohorts, respectively.

aCGH analysis

The biopsy preparation, DNA extraction, aCGH proce-
dure, and copy number detection were previously described
(26, 30). For each patient, the presence of a TMPRSS2-ERG
gene fusion was defined as an observation of a 21q22.2-3
genomic deletion. More specifically, a deletion must over-
lap with the region contained by the 5" and 3’ ends of ERG
and TMPRSS2, respectively (Supplementary Fig. S1).

TMA and THC

The biopsy TMA was constructed from pretreatment
prostate biopsies using a "checkerboard" technique as pre-
viously described (31). Benign and malignant prostate
tissues within each core were denoted for dissection based
on hematoxylin and eosin (H&E)-stained sections by an
experienced genitourinary pathologist (T. van der Kwast).
On the basis of pathologic markings, 4-mm-long "checkers"
were cutalong the length of the biopsies and flipped 90° and
placed within a TMA template (see Supplementary Fig. S2).
Although 173 patients had diagnostic biopsy blocks avail-
able, a pathologic re-assessment was completed in which
each checker was confirmed between contiguous slices for
the presence or absence of malignancy. After this quality
assurance step, and after removing patients lacking follow-
up data or who did not present with intermediate-risk
disease, a total of 118 patients remained for comparison
to clinical parameters and outcome (Fig. 1A). An assessment
of the intrapatient heterogeneity of number of checkers is
shown in Fig. 2 as evaluated using the Kappa and Fleiss
Kappa approaches (32, 33). This analysis showed that for
patients with more than one checker, there was significant
agreement between ERG staining results.

Immunostaining of the TMAs for ERG was conducted as
follows: deparaffinized 4-um sections were dehydrated,
blocked in 0.6% hydrogen peroxide in methanol for 20
minutes, and processed for antigen retrieval in EDTA (pH
9.0) for 30 minutes in a microwave, followed by 30 minutes
of cooling in EDTA buffer. Sections were then blocked in 1%
horse serum followed by an overnight incubation with the
ERG-MAb mouse monoclonal antibody (Biocare Medical
clone 9Fy), diluted 1:300 at room temperature. The immu-
nostaining was developed using the Polymer-HRP THC Kit
(Biogenex) according to manufacturer’s instructions. Next,
sections were counterstained in hematoxylin for 1 minute,
dehydrated, cleared, and mounted. Immunostained TMA
checkers were evaluated for ERG staining based on the
presence or absence of positive nuclear immunoreactivity
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173 Patients

55 Patients excluded from analysis due to:|
« Benign tissue (32);

« Checkers fall off (12);

+ No follow-up data (1);

« High-risk category (10);

118 Patients

59 Patients 59 Patients
ERG + ERG —

Figure 1. A, study flowchart. After exclusion of 55 patients, a total of 118 patients were available for analysis. B, representative images of ERG
immunohistochemistry in an ERG-negative checker in a GS 7 prostate adenocarcinoma (left) showing positive endothelial cells as control (arrow); and an

ERG-positive checker in a GS 7 (right).

in prostatic adenocarcinoma cells relative to endothelial
cells nuclei (which served as a positive control; see Fig. 1B).
Checkers with faint or negative endothelial cell staining
were excluded from analysis. ERG expression was then
dichotomized for positive and negative expression. We

* ERG Positive
* ERG Negative
> Benign
0]
=
= |
(7]
o]
o l
=
=
]
-
(2]
o i
o
w o
=
=
©
o
(9]
P4

1 2 3
Number of checkers

ERG status (positive vs. negative)

Two checkers | n =20, Cohen’s x =1, P < 0.0001

Three checkers |n =3, Fleiss’ x = 0.55, P=0.099

Figure 2. Frequency histogram showing the distribution of the 118
patients according to ERG staining (positive vs. negative), presence of
malignant tissue in the checker (no benign tissue was ERG positive), and
number of checkers per patient (ranging from 1 to 3). The table depicts the
analysis of intrapatient heterogeneity of checkers. Eighty percent (95 of
118) of the patients had information on a single biopsy checker. There
were 20 patients who had ERG scored on 2 checkers, and 3 patients who
had ERG scored on 3 checkers. Cohen's Kappa (32) was used to assess
patients with 2 checkers and Fleiss' Kappa (33), 3 checkers. Patients with
2 checkers were in perfect agreement (Cohen's ¥ = 1, P < 0.0001),
whereas for the 3 patients with 3 checkers, the checkers were in moderate
agreement (x = 0.55, P = 0.099).

considered a case positive for ERG expression if any of the
replicate checkers from that case showed any positive ERG
staining.

Statistical analysis

The primary outcome was biochemical relapse-free rate
(bRFR) defined according to Phoenix criteria (PSA nadir + 2
ng/mL; ref. 34) or institution of salvage ADT (patients
treated with ADT by their attending physician due to serial
and increasing PSA values, post-IGRT). Time to biochemical
failure was measured from the start of treatment until the
date of biochemical failure or date of last PSA measurement.
Five-year biochemical relapse-free rates were calculated
using the Kaplan-Meier method. The associations between
either TMPRSS2-ERG fusion or ERG overexpression and
clinical factors were examined, using the Fisher’s exact test
for GS and T category, and the Mann-Whitney test for
pretreatment PSA. The log-rank test was used to compare
relapse rates between patients with and without TMPRSS2-
ERG fusion or ERG overexpression. The effects of TMPRSS2-
ERG fusion and ERG overexpression on bRFR were also
tested adjusting for pretreatment PSA, T category, and GS
using Cox proportional hazards regression models. The
proportional hazards assumption was checked using
Schoenfeld residuals and found to be satisfied for all vari-
ables, with the exception of ADT in the aCGH cohort. A
time-varying coefficient was added to the Cox model to
account for this model violation. All statistical analyses were
done using the R statistical environment (v2.12.1). HRs,
95% confidence intervals (CI) and P values using the Wald
test were generated using the survival package version
(v2.36-5). A 2-sided P < 0.05 was used to assess statistical
significance.

Results

We designed this study to test whether IGRT patients had
a differential prognosis based on fusion status. If true,
fusion status would become a novel predictive factor for
outcome in patients receiving radiotherapy (but not sur-
gery). The clinical characteristics of both aCGH and IHC
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cohorts are presented in Table 1. These cohorts were com-
prised by intermediate-risk patients mostly with T2 disease,
GS 7, and PSA < 10 ng/mL. The mean radiation dose was 76
Gy. In the aCGH cohort, 27 of 126 biopsies (21%) were
found to be TMPRSS2-ERG fusion-positive. In the THC
cohort, a positive ERG immunohistochemical staining was
observed in 59 (50%) of the cases. We next tested whether
fusion status was associated with more aggressive clinical
states in our IGRT cohort. ERG overexpression was associ-
ated with T-category (T2 vs. T1; P = 0.02) but not with
Gleason score (7 vs. 6; P = 1.00) or pretreatment PSA
(continuous, P = 0.28). TMPRSS2-ERG fusion (aCGH
cohort) was not correlated to any of these clinical variables
(Supplementary Table S2A-S2F).

We then tested fusion status as a prognostic factor for
biochemical failure following IGRT. At a median follow-up
of 7.8 years (range, 0.8-12.2), 55 patients (44%) in the
aCGH cohort experienced biochemical relapse (see Table
1). Of these, 20 had biopsy-proven local failure in which 5
were fusion-positive and 15 fusion-negative (a similar pro-
portion to the entire cohort and arguing against fusion
status associated with increased radioresponse). For the
IHC cohort, at a median follow-up of 7.2 years (range,
0.33-12.2), 31 (26%) patients presented biochemical fail-
ure. Of the 31 patients with biochemical failure in this
cohort, 8 had biopsy-proven local failure (3 were ERG-
positive and 5 ERG-negative); again showing no trend for
ERG overexpression to be associated with increased
radioresponse.

The prognostic significance of pretreatment PSA, T-cate-
gory, and GS for bRFR for both cohorts is shown in Table 2
and Supplementary Fig. S3A-S3F. Only pretreatment PSA in
the aCGH cohort was prognostic for bRFR. We then added
data pertaining to fusion status into the model. TMPRSS2-
ERG status, whether assayed by aCGH or IHC, was not
prognostic for bRFR following radiotherapy in either uni-

Table 2. Multivariate analysis of clinical
prognostic factors for bRFR in the aCGH and
IHC cohorts

HR (95% CI) P
Clinical model, aCGH cohort
T category: 2 vs. 1 1.02 (0.56-1.85) 0.96
PSA (continuous) 1.13 (1.05-1.05) 0.001
GS7vs.6 0.93 (0.49-1.77) 0.83
ADT 0.16 (0.03-0.87) 0.03
ADT with time 1.03 (1.01-1.05) 0.02
Clinical model, IHC cohort
Fusion positive 0.79 (0.40-1.55) 0.49
T category: 2 vs. 1 2.16 (0.90-0.90) 0.09
PSA (continuous) 1.06 (0.97-1.15) 0.19
GS7vs. 6 1.32 (0.52-3.34) 0.56
ADT 0.92 (0.42-2.05) 0.84
ERG positive 0.89 (0.42-1.88) 0.76

variate or multivariate analyses (see Fig. 3A and B, respec-
tively). The univariate HRs associated with TMPRSS2-ERG
in the aCGH and THC cohorts were 0.78 (95% CI, 0.41-
1.49; P = 0.46) and 0.99 (95% CI, 0.48-2.02; P = 0.97),
respectively.

In concert with other publications showing the potential
predictive value of TMPRSS2-ERG status on ADT response
(18, 35, 36), ERG overexpression was reported to be a factor
in the relative response to salvage ADT following surgery
(19). However, in our subgroup of patients treated with
ADT, neither TMPRSS2-ERG fusion nor ERG overexpression
predicted outcome. In addition, the analysis of those
patients treated without ADT also showed no predictive
value of TMPRSS2-ERG status. (See HR values associated
with Kaplan-Meir plots in Supplementary Figs. S4 and S5.)

Given our goal to analyze IGRT patient outcome on the
basis of aCGH or ERG overexpression as a prognostic versus
predictive factor, we additionally determined whether
fusion status was prognostic in a radical prostatectomy
cohort in a similar low- to intermediate-risk cohort using
a published dataset (37). Details for this surgical cohort
were previously described (26). In this cohort, neither
TMPRSS2-ERG fusion (by aCGH) nor ERG overexpression
(based on mRNA abundance) were prognostic in 131 men
with a median follow-up of 4.6 years (see Supplementary
Figs. S6 and S7). Therefore, our studies suggest that
TMPRSS2-ERG status is not prognostic in intermediate-risk
patients treated with IGRT or radical prostatectomy.

Discussion

To our knowledge, this is the first study to address the role
of TMPRSS2-ERG status in pre-treatment biopsies of
patients with prostate cancer treated with radical radiother-
apy, one of the main treatment options for this disease. This
is a prerequisite to using this information to personalize
treatment at the time of diagnosis. Our clinical data shows
that TMPRSS2-ERG status, assayed using ERG overexpres-
sion or by aCGH, is not prognostic factor for biochemical
recurrence after IGRT. This was also true for a small sub-
group of patients treated with neoadjuvant and concurrent
high-dose (150 mg/d) bicalutamide. Given recent data in
surgical cohorts, this suggests that TMPRSS2-ERG status is
not a determinant of recurrence following precision local
therapies.

There are 2 main pathways of DSB repair: (i) nonhomol-
ogous end-joining (NHEJ) in which a defect in this pathway
leads to profound radiosensitivity and (ii) homologous
recombination (HR) in which less profound, but still
appreciable, radiosensitivity is observed (38). As such, if
the fusion was associated with a defect in NHEJ or homol-
ogous recombination, we would have observed a profound
and durable PSA response in fusion-positive prostate cancer
relative to fusion-negative prostate cancer. Given that
TMPRSS2-ERG status is not predictive for radiotherapy
response, our clinical study does not support the preclinical
hypothesis that fusion-positive, localized prostate cancer is
functionally deficient in DSB repair to the extent that is
clinically relevant for an IGRT treatment effect (21, 23, 24).
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In addition, although limited data were available for the
CGH and IHC cohorts, there was no evidence that post-
radiation, biopsy positivity was less in fusion-positive
patients compared with fusion-negative patients. Finally,
unlike the prognostic role of MYC amplification and/or loss
of PTEN or NKX3.1 alleles (26, 39), fusion positivity does
not lead to rapid early failure post-IGRT (suggestive of an
association with occult metastases and relatively aggressive
disease at the time of local treatment).

Our study has a number of limitations. Given the multi-
focality and molecular heterogeneity of prostate cancer, one
possible weakness of our analysis is that aCGH data were
based on only one biopsy to an index lesion (26) and 78%
of the cases from IHC cohort had only one checker assayed.
Although there is evidence showing that the dominant
lesion is the most common location for recurrence post-

treatment (40) and one core per tumor can be sufficient
(19, 41), we cannot rule out that we have undercalled fusion
status in this aCGH cohort (42). However, our additional
and complementary analysis of 118 intermediate-risk
patients in the IHC cohort showed ERG overexpression in
50% of those tumors. This is in the range of previous
series assessing ERG expression by IHC, RT-PCR, or FISH
(8, 43-45). Furthermore, we have shown that when more
than one checker per patient was available, there was little
intrapatient heterogeneity for ERG status (Fig. 2). Finally,
given the Cls for HR as shown in Table 2 (aCGH cohort with
CI: 0.40-1.55 and IHC cohort with CI: 0.42-1.88), itwould
be very unlikely that the true effect size is less than 0.40-
0.42 or greater than 1.55-1.88 in the two cohorts. However,
in the latter case, values greater than 1.0 would be asso-
ciated with increasing risk of failure following IGRT (i.e.,
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radioresistant phenotype) which would still argue against
the hypothesis that fusion status is a marker of defective DSB
repair associated with tumor cell radiosensitivity.

In the future, it would be advantageous to collect post-
IGRT biopsies for all patients in order to better define the
role of fusion status in terms of local control versus systemic
relapse. Karnes and colleagues have proposed that ERG-
positive patients present a better response to androgen
deprivation (36) and, recently, TMPRSS2-ERG status has
been shown to be a predictive biomarker for androgen
therapy in the form of abiraterone (46). As such, our results
could differ in patients receiving combined modality ther-
apy as the primary treatment (e.g., high-risk or locally
advanced prostate cancer) in which fusion status could be
studied in the context of the need for salvage ADT (includ-
ing enzalutamide or abiraterone) or systemic chemothera-
py. These concepts could be investigated in tissues prospec-
tively collected in randomized clinical trials.

Recent evidence suggests that gene rearrangements
involving TMPRSS2 and the ETS transcription factor ETV1
drive a distinct transcriptional program compared with
TMPRSS2-ERG. In the context of PTEN deletion, these
tumors seem to have more aggressive disease and poorer
outcome (47). Furthermore, a quantitative assessment of
ETV1 overexpression (47) and ERG overexpression (ref. 18;
rather than positive or negative) has been reported to be
prognostic across risk groups. Future studies using pretreat-
ment biopsies could test these endpoints in TMAs where
prostate cancer cellularity is increased to the extent that
quantitative immunohistochemistry is possible (e.g., pos-
sibly high-risk prostate cancers). In our intermediate-risk
series, selected samples had fewer than 50 cells and there-
fore quantitative scoring of expression was not deemed
feasible.

Molecular prognostic and prediction is an important
requirement in novel approaches to personalized cancer
medicine. Only large prospective IGRT and dose-escalated
cohorts, which also document the presence or absence
of TMPRSS2-ERG gene fusion, will define its complete
role in prostate cancer treatment. Additional clinical studies
are required to understand the potential complex relation-
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