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Complex genomic rearrangements (CGRs) are emerging as a new feature of cancer genomes. CGRs are characterized by
multiple genomic breakpoints and thus have the potential to simultaneously affect multiple genes, fusing some genes and
interrupting other genes. Analysis of high-throughput whole-genome shotgun sequencing (WGSS) is beginning to fa-
cilitate the discovery and characterization of CGRs, but further development of computational methods is required. We
have developed an algorithmic method for identifying CGRs in WGSS data based on shortest alternating paths in
breakpoint graphs. Aiming for a method with the highest possible sensitivity, we use breakpoint graphs built from all
WGSS data, including sequences with ambiguous genomic origin. Since the majority of cell function is encoded by the
transcriptome, we target our search to find CGRs that underlie fusion transcripts predicted from matched high-
throughput cDNA sequencing (RNA-seq). We have applied our method, nFuse, to the discovery of CGRs in publicly
available data from the well-studied breast cancer cell line HCC1954 and primary prostate tumor sample 963. We first
establish the sensitivity and specificity of the nFuse breakpoint prediction and scoring method using breakpoints pre-
viously discovered in HCC1954. We then validate five out of six CGRs in HCC1954 and two out of two CGRs in 963. We
show examples of gene fusions that would be difficult to discover using methods that do not account for the existence of
CGRs, including one important event that was missed in a previous study of the HCC1954 genome. Finally, we illustrate
how CGRs may be used to infer the gene expression history of a tumor.

[Supplemental material is available for this article.]

Cancer is a genomic disease characterized by unregulated cell

growth resulting from acquired or inherited DNA changes. Ge-

nome rearrangements are an important class of DNA changes,

known to disrupt the activity of tumor suppressor genes and pro-

mote increased activity of oncogenes. Genome rearrangements are

also known to create fusion genes: Novel oncogenes formed when

a rearrangement juxtaposes two or more existing genes. Fusion

genes are the defining molecular feature of many cancers and

represent potential drug targets in those cancers. A classic example

is the BCR-ABL1 gene fusion present in 95% of chronic myeloge-

nous leukemia patients and targeted by the drug iminitib.

The molecular mechanisms that cause somatic genome rear-

rangements are still the focus of investigation. Double-stranded

DNA breaks followed by a ‘joining event’ are known to result in

a simple genomic rearrangement consisting of a single breakpoint,

where a breakpoint is defined as a pair of genomic locations that

are distant in the normal genome but adjacent in the tumor ge-

nome. A breakpoint can be considered as the most basic unit of rear-

rangement. Examples of processes that generate single breakpoints

include nonhomologous end joining, homologous recombination-

mediated repair, and a single cycle of breakage-fusion-bridge (Bignell

et al. 2007).

Recently discovered are complex genomic rearrangements (CGRs),

rearrangements composed of multiple breakpoints with a specific

structure. In prostate cancer, for example, Berger et al. (2011) dis-

covered closed chains of breakage and rejoining (CCBRs). Berger et al.

(2011) suggested that a CCBR potentially occurs when distant

chromosomal regions are spatially colocalized in the nucleus,

possibly because they have been recruited by the same transcrip-

tional factory. Importantly, they showed that biologically relevant

gene fusions, such as TMPRSS2-ERG, were created by CCBR events.

CCBRs are balanced rearrangements: They result in little or no loss

of genomic material. It has been proposed that balanced rear-

rangements are more likely to produce functional gene fusions

(Mitelman et al. 2007).

Other cancers exhibit an entirely different type of CGR pro-

duced by a shattering of chromosomal regions, followed by

a reassembly from the resulting fragments (Stephens et al. 2011).

As a result, some breakpoints between large chromosomal seg-

ments contain additional smaller fragments (genomic shards) in-

terposed at the breakpoint (Bignell et al. 2007). These genomic

shards originate from other regions affected by the catastrophe,

typically at the boundaries of deleted regions (Bignell et al. 2007).

Breakpoints with small (;500-bp) genomic shards interposed at

the breakpoint are termed complex and have been identified pre-

viously in breast cancer (Stephens et al. 2009). Breakpoints with

larger fragments of other genes interposed at the breakpoint have

the potential to create polyfusions (Wu et al. 2012a), fusion genes

composed of three or more separate genes. Both complex break-

points and polyfusions are rearrangements composed of two or

more simple breakpoints, and identification of all breakpoints is

required to discover the fusion.

High-throughput paired-end whole-genome shotgun se-

quencing (WGSS) is currently the most efficient method of
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identifying breakpoints in tumor genomes. Briefly, WGSS can be

used to sequence the ends of short fragments of DNA produced by

fragmentation of a tumor genome. The pairs of end sequences

(paired-end reads, or simply reads) can then be mapped back to

a healthy reference genome sequence. Distantly mapping reads

or reads that map with unexpected orientation can then be used

to predict breakpoints. WGSS, however, presents many unique

challenges compared with earlier technologies. The presence of

repeated regions in the genome and short WGSS read lengths

complicate the problem of unambiguously identifying the origin

of some WGSS reads. Furthermore, sequencing errors lead to some

proportion of false reads. Both of these problems are magnified due

to the huge size of WGSS data sets. Finally, aneuploidy, tumor

heterogeneity, and cellularity have the combined effect of diluting

the sequence signal of breakpoints, even in high coverage WGSS

data sets. Nevertheless, solutions now exist for accurately pre-

dicting breakpoints from WGSS (Chen et al. 2009; Hormozdiari

et al. 2009, 2011; McPherson et al. 2011b; Wang et al. 2011),

though a true account of false-negative rates remains elusive.

Given the ability to predict breakpoints in WGSS, an im-

portant question is how to infer genome structure from these

breakpoints, and potentially reconstruct chromosomal architec-

tures. In a recent study, Greenman et al. (2011) propose methods

for reconstructing ‘digital karyotypes’ from copy number and

breakpoint predictions. Their method requires precise breakpoint

predictions and could not guarantee a unique solution for a rea-

sonably complex genome. Previous to Greenman et al. (2011),

efforts to reconstruct tumor genomes relied on low resolution

data such as fluorescence in situ hybridization (FISH) and bacte-

rial artificial chromosome (BAC) sequencing (Raphael et al. 2003;

Raphael and Pevzner 2004; Ozery-Flato and Shamir 2009). These

methods may be sufficiently sensitive to reconstruct large-scale

rearrangements; however, they will likely miss complex focal

rearrangements.

In this study, we propose a method for reconstructing CGRs

from WGSS data. Crucial to the problem of identifying CGRs is

the missing data problem: identification of a CGR relies on the

identification of all n breakpoints in the CGR. Therefore, the

basis for our approach is a high sensitivity method for predict-

ing breakpoints. However, WGSS read alignment data contains

a significant amount of noise, and this noise will produce false-

positive predictions, especially with a method that prioritizes

sensitivity. Thus we calculate a probability for each breakpoint

that reflects our belief in its existence. Like the aforementioned

studies, we identify CGRs using breakpoint graphs (Pevzner 2000).

We incorporate the breakpoint probability into the graph, and

use that probability to guide our search for high probability

structures representing potential CGRs. We prioritize our search

for CGRs based on fusion transcript predictions from matched

high-throughput cDNA sequencing (RNA-seq), thereby using

effect on the transcriptome as an indicator of potential func-

tional significance.

We have applied our method, nFuse, to publicly available

WGSS and RNA-seq data for the well-characterized breast cancer

cell line HCC1954. We show that we are able to rediscover a sig-

nificant proportion of previously discovered breakpoints. Fur-

thermore, we show that the breakpoint probability we calculate

accurately separates the previously discovered breakpoints from a

background of predominantly false-positive predictions. By use of

long-range PCR (LR-PCR), we validated five out of six polyfusions

predicted by nFuse for HCC1954. We have also applied nFuse to

WGSS and RNA-seq data generated from primary human prostate

cancer sample 963 (Wu et al. 2012b). By use of a CCBR discovered

in 963, we illustrate how CCBRs can be used to infer the gene ex-

pression history of a tumor. Finally, we present an example of a

CCBR with a complex breakpoint discovered in 963, providing

a link between CCBR and complex breakpoints.

Methods

Complex rearrangement discovery using breakpoint graphs
Complex rearrangements involve two or more breakpoints, such
that the set of breakpoints elicit a specific structure. To identify
complex rearrangements, we employ a construct called the break-
point graph (Pevzner 2000). The complex rearrangements we are
interested in discovering naturally arise as features of the break-
point graph. Unlike previous breakpoint graph approaches, the
breakpoint graph we construct includes a measure of the un-
certainty inherent in breakpoint predictions produced from WGSS
data. Our algorithms then seek to identify CGRs more likely to be
real by searching for the higher probability structures in the
breakpoint graph.

Of crucial importance is the effect of missing data on our
ability to predict CGRs. For a CGR composed of n breakpoints,
failing to predict any one of those n breakpoints will result in
a failure to identify the CGR. To mitigate this problem, we seek to
include in the breakpoint graph all reasonable breakpoint pre-
dictions, including those nominated by reads with ambiguous
genomic origin. Thus the breakpoint graph we construct will
contain a large amount of noise, and the majority of breakpoints
are expected to be false positives. A real but low probability
breakpoint may then be identified as part of a CGR, provid-
ing the probabilities of the CGR’s other breakpoints are suffi-
ciently high. In contrast, removing low probability breakpoints
before building the breakpoint graph would also remove the
aforementioned real breakpoint, making it impossible to iden-
tify the CGR.

nFuse seeks to identify two types of CGRs: CCBRs (Berger
et al. 2011) and polyfusions/complex breakpoints. We empha-
size here that these two types of CGRs are very different types
of events, unified by breakpoint graphs as a common computa-
tional representation. We introduce the concept of the break-
point graph by first focusing on polyfusions and complex
breakpoints, after which we describe CCBRs and their break-
point graph representation.

Breakpoint graph structure

A breakpoint is an adjacency in one genome that does not exist in
another genome. In the context of cancer genomics, we are in-
terested in identifying adjacencies in the tumor genome not
found in the normal (or reference) genome. Such unexpected
adjacencies are evidence of somatic rearrangement and may have
important implications for tumor biology. For instance, an un-
expected adjacency between the 59 exons of gene A and the 39

exons of gene B may represent an A-B fusion gene that drives
proliferation of a tumor.

The breakpoint graph is a representation of a set of unexpected
adjacencies, or breakpoints. We use the breakpoint graph to repre-
sent the set of breakpoints identified in a tumor genome that are not
in the reference genome. The graph is defined on a set of vertices
representing the set of nucleotides that are adjacent in the reference
but not in the tumor. The graph contains two types of edges,
breakpoint edges and adjacency edges. Breakpoint edges represent
adjacencies in the tumor, while adjacency edges represent a puta-
tively contiguous region of the reference genome not interrupted by
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a breakpoint. Note that for identification of CCBRs, we generalize
adjacency edges as described in the CCBR section below.

Consider the following example illustrated in Figure 1. Let
A1 and A2 be adjacent nucleotides in reference chromosome A
and let B1 and B2 be adjacent nucleotides in reference chromo-
some B and suppose we identify an A1, B2 breakpoint (Fig. 1A).
The graph for the A1, B2 breakpoint contains vertices for A1, A2,
B1, and B2, in addition to the breakpoint edge (A1, B2) (Fig. 1B).
Now consider an additional B3, C1 breakpoint between chromo-
somes B and C (Fig. 1C). In addition to the (B3, C1) breakpoint
edge, the graph also contains a (B2, B3) adjacency edge repre-
senting a putatively contiguous region in the tumor between
nucleotides B2 and B3 (Fig. 1D). Finally consider a fourth break-
point between chromosomes A and B (Fig. 1E) represented by an
(A3, B5) breakpoint edge (Fig. 1F). The breakpoint graph will also
contain a (B2, B5) adjacency edge representing the possibility that
the (B3, C1) does not exist in a putative tumor chromosome that
contains both the (A1, B2) and (B5, A3) breakpoints. Thus each

breakpoint will be considered optional in our realization of the
breakpoint graph. To reflect this, we define adjacency edges as
follows. Let Xleft, Xright be a pair of nucleotides adjacent in the
reference with a breakpoint edge incident on Xleft. We add an
adjacency edge from Xleft to every upstream right vertex. Simi-
larly, if a breakpoint edge is incident on Xright, we add an adja-
cency edge from Xright to every downstream left vertex.

Polyfusions and complex breakpoints

A key feature of the breakpoint graph is that every alternating path
represents a putative tumor chromosome. Polyfusions and com-
plex breakpoints are subsequences of tumor chromosomes and as
such will be represented as alternating paths given successful
identification of all relevant breakpoints. As an example, consider
a fusion between gene X on chromosome A and gene Y on chro-
mosome C, for which a fragment of chromosome B is interposed at
the breakpoint (Fig. 1G). In the breakpoint graph, the complex
breakpoint will be represented as an alternating path of length 5

Figure 1. Breakpoint graphs and polyfusions. (A) A breakpoint as an unexpected adjacency. (B) The breakpoint graph for a single breakpoint showing
a breakpoint edge. (C ) Two breakpoints on chromosomes A, B, and C. (D) The breakpoint graph for the two breakpoints showing two breakpoint edges
and an adjacency edge. (E ) Three breakpoints on chromosomes A, B, and C. (F ) The breakpoint graph for the three breakpoints showing a (B2, B5)
adjacency edge that encodes the optional nature of breakpoint (B3, C1). (G) Breakpoints for an X-Y gene fusion with a complex breakpoint. (H) The
breakpoint graph for the complex breakpoint showing an alternating path between X and Y.
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between vertices representing the 59 end of gene X and the 39 end
of gene Y (Fig. 1H). In general, a polyfusion or complex breakpoint
involving n loci will be represented in the breakpoint graph as an
alternating path of length 2n � 1.

Closed chains of breakage and rejoining

CCBRs can be thought of as a generalization of a reciprocal trans-
location to n > 2 loci. For a reciprocal translocation, two loci are
broken and the broken ends are swapped and rejoined. A three-loci
CCBR involves the breakage, permutation, and rejoining of three
loci. An example three-loci CCBR event would be the trans-
formation of chromosomes A, B, and C into tumor chromo-
somes A-B, B-C, and C-A (Fig. 2A).

In the ideal case, no chromosomal material will be lost in the
exchange (Fig. 2A). As shown in this work and previously (Berger
et al. 2011), many instances of chromosomal breakage and
rejoining involve the loss or gain of chromosomal material. As
a result, the breakpoints at broken and rejoined loci may be sepa-
rated by an unknown distance. Figure 2B depicts a more realistic
example involving chromosomes A, B, and C. In this example, the
CCBR has resulted in a loss of small sections of chromosomes A and
C. In addition, the A-B and B-C tumor chromosomes created by the
CCBR both include copies of a segment of chromosome B, result-
ing in a gain of that segment. Of crucial importance, any loss or
gain caused by a CCBR will not necessarily be represented by ad-
ditional breakpoints in the breakpoint graph. Nevertheless, the
breakpoint graph, properly defined, will yield CCBRs as a specific
type of subgraph.

To identify CCBRs, we augment the previously defined break-
point graph with additional edges. Call the previously defined

adjacency edges as gain adjacency edges. Define additional ad-
jacency edges called loss adjacency edges as follows. Let Xleft,
Xright be a pair of nucleotides adjacent in the reference with
a breakpoint edge incident on Xleft. Add loss adjacency edges
from Xleft to every downstream right vertex. Similarly, if a break-
point edge is incident on Xright, add loss adjacency edges from
Xright to every upstream left vertex. A n-loci CCBR in the resulting
graph will be represented by an alternating cycle of length 2n.
Figure 2C shows the breakpoint graph for the CCBR in Figure 2B.
The breakpoint edges, loss edges (A1, A4) and (C1, C4), and gain
edge (B2, B3) together form an alternating six-cycle. Note that an
alternative explanation for the breakpoints in Figure 2B is a re-
ciprocal translocation between chromosomes A and C, with
a complex breakpoint for the A-C chromosome involving a shard
of chromosome B. We will explore this ambiguity further when
discussing the results for tumor sample 963.

Identifying high-probability CGRs

A breakpoint graph constructed from WGSS data will contain
many alternating paths connecting candidate fused genes, and
many alternating cycles. Some of the ambiguity arises because the
WGSS data are produced from a diploid, or potentially poly-ploid,
genome. Tumor chromosomes reassembled from copies of the
same reference chromosomes will each produce a set of break-
points. The WGSS data for these tumor chromosomes will then
yield a merged set of all breakpoints. Only in very simplistic in-
stances will it be possible to repartition the merged breakpoints
into sets of breakpoints each produced by the same tumor chro-
mosome. Furthermore, the breakpoints obtained from WGSS data
will include a significant number of spurious predictions, espe-

Figure 2. Closed chains of breakage and rejoining (CCBRs). (A) In an idealized version of a CCBR, no chromosomal material is lost or gained. (B) Actual
CCBRs may involve small loss or gain of chromosomal material. For instance, the A2!A3 and C2!C3 sections of chromosomes A and C appear to have been
lost, and the B2!B3 section of chromosome B appears to have been duplicated. (C ) The breakpoint graph for the CCBR in B showing (A1, A4) and (C1, C4)
loss edges and a (B2, B3) gain edge.

Complex genomic rearrangements in cancer
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cially when prioritizing sensitivity as proposed by nFuse. Spurious
breakpoint predictions will further increase the number of alter-
nating paths and cycles.

nFuse uses an objective function to identify real CGRs
from the background of incidental and false-positive structures.
Our objective function is probabilistically motivated and incor-
porates the probability that each breakpoint exists (breakpoint
probability), in addition to a probability calculated for the total
length of adjacency edges in the structure (CGR length proba-
bility). Inclusion of the breakpoint probability will allow nFuse to
mitigate the effects of spurious breakpoint predictions. We model
the CGR length probability as an exponential distribution with
the scale parameter b and motivate the choice of exponential
independently for complex breakpoints/polyfusions and CCBRs
in the following sections. The negative log probability of a CGR
with breakpoints X and adjacency edge lengths Y can be calcu-
lated as given in Equation 1, herein referred to as the CGR score:

CGR score [� logP X; Yð Þ = log b + +
y2Y

y

b
� +

x2X

log P xð Þ: ð1Þ

Let G be a breakpoint graph with breakpoint edges given dis-
tance�logP(x) and adjacency edges given distance y

b
. By inspection

of Equation 1, an alternating cycle or path that maximizes P(X, Y)
will be a shortest alternating cycle or path on G.

Breakpoint prediction and probability estimation

We predict breakpoints from discordant paired end alignments.
Our approach aims for high sensitivity by including reads with
multiple genomic mappings, and reads that map only partially to
the genome. To ensure adequate specificity, we calculate a proba-

bility for each breakpoint based on the alignment evidence and use
that probability in downstream analysis including CGR discovery.

Let R be the set of paired end WGSS reads. We generate a set of
mapping locations M for R using the following well-established
strategy (Volik et al. 2003; Tuzun et al. 2005). For each paired end
read r1

j ; r
2
j

� �
2 R:

1. Identify a single concordant mapping location if it exists.
2. If no concordant mapping location exists:

a. Identify the n top scoring mapping locations for r1
j .

b. Identify the n top scoring mapping locations for r2
j .

We identify the n top scoring mapping locations for r1
j (and r2

j )
as follows. Let sj be the maximum alignment score attained by
partial alignment of read j to the genome. Briefly, a partial align-
ment is an alignment of the first ‘ nucleotides of the read, for ‘ that
maximizes an alignment score (Supplemental Methods). Let k be
the number of mappings of read j that attain sj. If k > n assume the
read is unmappable and filter it, otherwise retain the k mapping
locations. The study described herein used Bowtie 2 (Langmead and
Salzberg 2012) in local alignment mode to obtain partial align-
ments. We are currently exploring the tradeoff among speed, ac-
curacy, and flexibility of available aligners to allow optimal perfor-
mance of the nFuse breakpoint prediction.

Let mj 2 M be the mapping locations identified for read
r1

j ; r
2
j

� �
2 R. Define the following indicator variables:

cj [ read j is concordant

dj [ the true alignment was discovered

and is in the set mj.

Table 1. Sequencing statistics for HCC1954 and 963

HCC1954 963 Simulation

WGSS RNA-seq WGSS RNA-seq WGSS RNA-seq

Read length 36,80 36,50 50,76 50 80 50
Fragment length mean 193 176 406 233 300 250
Fragment length standard deviation 37 33 49 36 50 40
Total reads 340,977,703 175,508,350 176,764,897 86,720,870 208,839,566 2,877,519
Concordantly mapped reads 308,724,222 145,180,689 143,853,385 65,826,510 186,178,029 2,469,024

Figure 3. Performance of nFuse breakpoint prediction on breakpoints previously discovered in HCC1954. (A) Shown is the overlap between sets of
breakpoints discovered by Bignell et al. (2007), Stephens et al. (2009), Galante et al. (2011), and nFuse. Previously discovered breakpoints are redis-
covered by nFuse with a recall of 0.858. (B) Beanplot comparing nFuse breakpoint scores for a random selection of 3000 nFuse breakpoint predictions, and
the 296 ‘true positive’ nFuse breakpoint predictions. Score is calculated as �log probability. The nFuse breakpoint scoring ranks true-positive breakpoints
significantly higher (closer to zero) than random breakpoints, many of which are expected to be false positives.

McPherson et al .
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We make the assumption that reads mapped concordantly by
the aligner are in fact concordant (with probability 1). We filter the
concordantly mapped reads to create the set of discordant reads Rd

and set of discordant mappings Md. As a result, P(cj = 1, dj = 1) = 0 for
the set of filtered reads. We estimate probabilities for the remaining
two possibilities for the true alignment of each read:

P cj = 1
���� �

[ concordant but missed by the aligner

P dj = 1
��cj = 0; �

� �
[ discordant but missed by the aligner

We estimate P(cj = 1|�) using the maximum concordant
alignment score csj. To calculate csj, we align both ends of read j to
all mapping locations in the set mj, and set csj to the maximum
alignment score identified by this process. We then calculate P(cj =

1|csj) (Supplemental Methods) and use it to approximate P(cj = 1|�).
We approximate P(dj = 1|cj = 0,�) as P(dj = 1|cj = 0, asj) where asj is the
alignment score for read j (Supplemental Methods).

Next, we cluster the discordant alignments Md based on the
likelihood that a set of alignments were generated by the same
breakpoint (Supplemental Methods). Let the resulting clusters of
alignments represent putative breakpoints. Let gij indicate that
putative breakpoint i generated read j. Assume gij = 0 if read j is not
in the cluster that supports breakpoint i. We estimate P(gij = 1|�) as
P(gij = 1|nmj, dj = 1), where nmj is the number of alternate mapping
locations of read j. Under the assumption that all mapping loca-
tions discovered by the aligner are equally likely, we calculate
P gij = 1 nmj

�� ; dj = 1
� �

= 1
nmj

.
Finally, let bi indicate that breakpoint i is true, let Gi be the set

of all gij for breakpoint i, and let ni be the number of reads that were
generated by breakpoint i, that is, ni = +gij2Gi

gij. We estimate P(bi|ni)
(Supplemental Methods) and use it to estimate P(bi|�) as given by
Equation 2.

P bij�ð Þ= +
Gi

P bijnið Þ
Y

j

P gij = 1
���nmj; dj = 1

� �

3 P dj = 1
��asj; cj = 0

� �
3 P cj = 0jcsj

� �
: ð2Þ

Identifying high probability complex breakpoints and polyfusions

Complex breakpoints and polyfusions may be frequently oc-
curring events in a rearranged tumor genome. Without further
information, the biological significance of these events will be
difficult to quantify. We use fusion transcripts predicted from
RNA-seq (McPherson et al. 2011a) to guide our search for complex
breakpoints and polyfusions, using effect on the transcriptome as
an indicator of potential biological significance. The fusion
transcripts also serve as a scaffold for
reconstruction of the complex break-
points/polyfusions.

Given a gene A–gene B fusion tran-
script predicted from RNA-seq, we would
like to predict the set of breakpoints that
produced the A-B fusion. The breakpoints
will often occur in the introns of gene A
and B. As a result, these breakpoints are
often spliced out of the A-B fusion tran-
script. Let xA and xB be the genomic po-
sitions of the splice sites in gene A and B
that are predicted as spliced together in
the fusion transcript. We would like to
predict the intron sequence between xA

and xB on the tumor chromosome. We

model the intron lengths of fusion transcripts using an exponential
with rate parameter bp. An alternating path p from xA to xB represents
a potential intron for the A-B fusion transcript, and the total length
of the adjacency edges in p equals the length of the putative intron.
Following from the analysis that lead to the CGR score (Equation 1),
we reconstruct the most likely intron by searching for the shortest
alternating path between xA and xB on the graph G with b = bp. For
details on setting bp, see Supplemental Methods.

Identifying high probability CCBRs

Very little is currently known about CCBRs, making model selec-
tion difficult. We model the total length of loss and gain adjacency
edges in a CCBR using an exponential distribution with rate pa-
rameter bc. We selected the exponential because it is the maximum
entropy distribution for a positive random variate with fixed
mean. For the purposes of this study, we have used bc = 2000 bp. We
expect that the future discovery of additional CCBRs will allow us
to properly estimate bc.

Similar to complex breakpoints/polyfusions, we search for
CCBRs that are associated with fusion transcript predictions. For
each breakpoint b associated with a fusion transcript as described in
the previous section, we search for a CCBR that includes b. Following
from the analysis that lead to the CGR score (Equation 1), we re-
construct the most likely CCBR that includes b by searching G with
b = bc for the shortest alternating cycle that includes b. Specifically,
we first remove the breakpoint edge (b1, b2) for breakpoint b from G,
then search for the shortest between b1 and b2.

Results
We have used nFuse to identify CGRs in three data sets: a HCC1954

breast cancer cell line data set, a data set derived from primary

tumor 963 (Wu et al. 2012b), and a simulated data set that includes

120 synthetic CGRs (for sequencing statistics, see Table 1). We used

the HCC1954 data set to assess breakpoint prediction sensitivity

and breakpoint scoring specificity and used the simulated data set

to assess precision and recall for CGR discovery. CGRs were re-

tained only if their CGR score (Equation 1) was less than 20.

HCC1954 breast cancer cell line

We first applied our method to publicly available data for

HCC1954, a cell line that has been well studied at the molecular

level. The HCC1954 cell line was derived from a ductal breast

carcinoma and is estrogen receptor negative, progesterone receptor

negative, and ERBB2 positive (Zhao et al. 2010). Four recent studies

sought to identify rearrangements in HCC1954. Bignell et al.

(2007) used end sequencing of BAC libraries to discover rear-

Table 2. Summary of putative CCBRs discovered in HCC1954

Total distance between breakpoints

No. of breaks. 0–500 500–1000 1000–2000 2000–5000 5000–10000 >10000

2 6 0 3 5 2 1
3 6 1 4 1 1 0
4 1 2 0 0 3 3
5 0 0 0 0 0 4
6 0 0 0 0 0 1
7 0 0 0 0 0 2
8 0 0 0 0 1 0

The CCBRs are grouped by number of breakpoints and by cumulative distance between breakpoints.
Tables shows counts for each group.

Complex genomic rearrangements in cancer
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rangements in tumor amplicons and identified 59 unique break-

points in HCC1954. Zhao et al. (2009) used long transcriptome

reads to nominate fusion transcripts and a combination of LR-PCR

and FISH to identify underlying genomic rearrangements. Stephens

et al. (2009) used WGSS to discover rearrangements in 24 breast

cancers and were able to identify 230 unique breakpoints in

HCC1954. Some of the breakpoints discovered by Stephens

et al. (2009) were more complex than a breakage and rejoining of

two genomic loci. Interposed between the breakpoints were one

or more genomic shards: small (<500-bp) fragments of DNA from

elsewhere in the genome. Galante et al.

(2011) also used WGSS to discover so-

matic alterations in HCC1954 and iden-

tified 77 unique breakpoints. Finally,

Asmann et al. (2011) used their pipeline

SnowShoes-FTD to identify four fusion

transcripts in HCC1954.

We obtained WGSS and RNA-seq

data for HCC1954 from the NCBI Se-

quence Read Archive (SRA; http://www.

ncbi.nlm.nih.gov/Traces/sra). The WGSS

data (accession no. ERA010917) are the

same data used in the study by Galante

et al. (2011), and the RNA-seq data (ac-

cession no. ERA015355) were produced in a separate study on allele-

specific expression (Zhao et al. 2010). Next we compiled a list of

345 validated breakpoints from the studies by Bignell et al. (2007),

Stephens et al. (2009), and Galante et al. (2011). Small deletions

were excluded from the analysis since they are not the focus of this

study. There was very little overlap between the sets of breakpoints

discovered in each study, with only three breakpoints common to

all three studies.

By use of the previously validated breakpoints, we sought to

estimate whether nFuse is sensitive enough to detect a significant

Figure 4. Complex breakpoints and polyfusions in HCC1954. (A–D) Complex breakpoints produce truncated GSDMC and PVT1 transcripts and
ENDOD1-WASH2P and ZDHHC11-RNF130 fusion transcripts. Validated by LR-PCR. (E ) A PHF20L1-FAM49B-SAMD12 polyfusion produces an in-frame
PHF20L1-SAMD12 fusion transcript. Validated by LR-PCR. (F–G) Complex breakpoints corroborated by multiple fusion transcripts.

Table 3. Summary of putative complex breakpoints discovered in HCC1954

Total length of genomic shards

No. of shards 0–500 500–1000 1000–2000 2000–5000 5000–10000 >10000

1 12 0 3 3 2 7
2 1 0 0 1 0 1
3 0 0 0 0 0 0
4 0 0 0 0 0 1
5 0 0 0 0 0 1
6 0 0 0 0 0 1

The complex breakpoints are grouped by number of genomic shards and by total length of shards.
Tables shows counts for each group.
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proportion of real breakpoints and whether the nFuse breakpoint

ranking method could discern between real breakpoints and the

background noise of spurious predictions. The breakpoint de-

tection step of the nFuse pipeline identifies 296 of the 345 pre-

viously validated true-positive breakpoints, accounting for 91.5% of

the Bignell et al. (2007) breakpoints, 81.3% of the Stephens et al.

(2009) breakpoints, and 97.4% of the Galante et al. (2011) break-

points, for a recall of 0.858 (Fig. 3A). In addition to the 296 true-

positive breakpoints, nFuse also identifies 2,634,524 additional

breakpoints. Since 2,634,524 is well beyond the expected number

of breakpoints in a rearranged tumor genome and since we are

including even very low probability breakpoint predictions, a large

majority of the 2,634,524 are expected to be false positives. We

sought to estimate whether the breakpoint probability we calculate

could discriminate between true and false breakpoints. We first

selected 3000 breakpoint predictions at random and assumed that

a significant majority of these predictions were false. Next we

compared the scores of the 3000 randomly selected predictions to

the scores of the true-positive predictions (Fig. 3B), finding that

the true-positive predictions scored significantly better than the

randomly selected predictions (P < 2.2 3 10�16 Wilcoxon rank sum

test).

Next we used a breakpoint graph constructed from the

2,634,524 HCC1954 breakpoints to predict CGRs in HCC1954 (for

summaries of CCBRs and complex breakpoints, respectively, see

Tables 2 and 3). We then attempted to validate the top six complex

breakpoint/polyfusion predictions as ranked by CGR score (Equa-

tion 1). For validation, we performed LR-PCR across the entire

length of the complex breakpoint/polyfusion. An event was con-

sidered validated if the size of the PCR product matched the pre-

dicted length and if Sanger sequencing of both ends of the PCR

product matched the predicted sequence. Five out of six LR-

PCR assays produced PCR products, four of the predicted size. The

PCR product for PHF20L1-SAMD12 was ;1.5 kbp longer than

expected. We confirmed by PCR that each of the three individual

breakpoints predicted to form the PHF20L1-SAMD12 polyfusion

were present in the PHF20L1-SAMD12 PCR product. Thus we

conclude that the PHF20L1-SAMD12 prediction is correct but po-

tentially incomplete, and we suspect the existence of an additional

insertion that is not identified when searching for the least com-

plex solution. The five validated events are shown in Figure 4.

Four of the five validated complex breakpoints (Figs. 4A–D)

express intergenic or intronic sequence and are more likely to be

truncating mutations than viable fusion genes. The fifth fusion

transcript, PHF20L1-SAMD12, first discovered by Asmann et al.

(2011), is predicted to preserve the reading frames of both PHF20L1

and SAMD12 (Fig. 4E). Among high-confidence fusion transcripts,

PHF20L1-SAMD12 expression is second only to STRADB-NOP58, as

suggested by read depth at the breakpoint.

Genomic shards have implications for traditional rearrange-

ment detection techniques. The genomic shards range in size from

220 bp to 4.3 kbp for the five events we validated. A 220-bp ge-

nomic shard may be small enough such that some paired end reads

span the full complex breakpoint, allowing detection of the

breakpoint using conventional methods. However, the 1-kbp and

larger genomic shards will be longer than the paired end reads

in most WGSS assays, preventing straightforward detection of

the breakpoint. Thus a potentially interesting gene fusion such

as PHF20L1-SAMD12 would be impossible to discover when

Table 4. Statistics for CGR breakpoints detected by nFuse

CGR Case Type CGR score Breakpoint Read count Multimap Probability Score Rank

HMGN2P46-MYC 963 CCBR 12.06 1 5 1.8 0.994 0.01 613
2 3 1.3 0.022 3.83 4,328
3 6 1.0 1.000 0.00 414
4 1 1.0 0.001 7.47 152,379

WDTC1-EFCAB4A 963 CCBR/CB 7.42 1 6 1.0 0.759 0.28 849
2 1 1.0 0.001 6.59 48,415
3 12 1.3 1.000 0.00 541

ZDHHC11-RNF130 HCC1954 CB 1.74 1 10 1.0 0.545 0.61 1,311
2 9 1.7 0.382 0.96 1,574

END0D1-WASH2P HCC1954 CB 4.75 1 5 1.8 0.998 0.00 400
2 14 5.1 0.578 0.55 1,277

PVT1-Intergenic HCC1954 CB 2.96 1 3 1.3 0.465 0.76 1,414
2 5 1.0 0.630 0.46 1,204

PHF2OL1-SAMD12 HCC1954 CB 7.31 1 1 1.0 0.023 3.78 16,445
2 9 3.0 1.000 0.00 273
3 3 1.0 0.074 2.60 4,102

GSDMC-Intergenic HCC1954 CB 9.04 1 1 1.0 0.004 5.58 139,931
2 3 1.0 0.059 2.83 4,576

OXR1-Intergenic HCC1954 CB 14.29 1 11 2.5 1.000 0.00 204
2 2 1.5 0.026 3.65 6,879

PCNT-Intergenic HCC1954 CB 16.77 1 1 1.0 0.001 6.63 400,357
2 2 2.5 0.081 2.52 3,908

(Type) Closed chain breakage and rejoining (CCBR) or complex breakpoint (CB). (CGR score) Score calculated as per Equation 1. (Breakpoint) Order of
the breakpoint in the CCBR or CB. (Read count) Number of supporting WGSS reads. (Multimap) Average number of genomic loci to which supporting
reads can alternatively be mapped. (Probability) Breakpoint probability as calculated using Equation 2. (Score) Negative log of the breakpoint probability.
(Rank) Rank of the breakpoint in the set of all breakpoints ordered by score.

Table 5. Complex breakpoints identified in a simulated data set

Class Shard length No. of shards Recall

A 500-2000 1 19/20
B 1000-2000 2–4 16/20
C 2000-10000 3–5 19/20

Total 54/60
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considering only single breakpoints as evidence for gene fusions,

as has been done previously (Bashir et al. 2008). Instead, such

methods would falsely nominate SAMD12-FAM49B and PHF20L1-

Intergenic as truncating mutations.

We identified an additional two high-confidence polyfusions

by searching for sequences of genomic shards highly connected by

fusion transcripts. For each fusion transcript corroborated by al-

ternating path p, we searched for other fusion transcripts corrob-

orated by a subpath of p. We used the resulting sets of (non-

conflicting) fusion transcripts to identify polyfusions for which

each genomic shard is expressed in at least one nonconflicting

fusion transcript. Thus we use fusion transcripts as a scaffold for

local genome reconstruction. We believe the highly connected

nature of the additional two polyfusions (Figs. 4F,G) provides more

confidence in these events.

Finally, we used the seven complex breakpoints/polyfusions

(five validated and two high-confidence) to evaluate the utility of

including suboptimal breakpoint predictions in the breakpoint

graph. Statistics for the seven events are detailed in Table 4. The

15 breakpoints for the seven events include breakpoints with low

read support, breakpoints supported by multi-map reads, and low

probability breakpoints. Three of the breakpoints are supported

by only one read. For two of the breakpoints, the entire set of

supporting reads also align to other genomic loci and form a co-

herent cluster at those loci. Thus even multimap resolution

methods such as VariationHunter (Hormozdiari et al. 2009) may

be unable to identify the correct mappings of these reads. An-

other two breakpoints are given low probability due to the exis-

tence of marginal concordant alignments. Using breakpoints

supported by at least two uniquely aligning, high-confidence

discordant reads would have resulted in identification of only

three of the seven events.

Simulated data set

We used a simulated data set to estimate the sensitivity of the nFuse

method. We generated 209 million 80 3 80 WGSS reads and 2.9

million 50 3 50 RNA-seq reads from a simulated genome that in-

cluded 60 CCBRs and 60 complex breakpoints. WGSS and RNA-seq

reads were generated using maq simulate

and simulation parameters trained from

the HCC1954 data (lanes ERR016395

and ERR022661). The 60 CCBRs and 60

complex breakpoints were generated in

three different classes of difficulty, with

features of each CGR selected uniformly

and at random from a range of values de-

pendent on the class. We analyzed the

simulated data set using nFuse with a

threshold of 20 for the CGR score.

For the complex breakpoints, we first

selected two genes with at least one intron

each and then selected an intron from each gene. We created a fusion

transcript by splicing the 59 exons of the first gene to the 39 exons of

the second gene, and we sampled RNA-seq reads from the fusion

transcript at a coverage selected from between 203 and 2003. Next

we created a complex breakpoint composed of n shards of length

{‘1..‘n}, where n and {‘1..‘n} were selected from a range of values de-

pendent on the class difficulty (Table 5). WGSS reads were sampled

from the complex breakpoint at a coverage selected from between 53

and 303. nFuse detected 49 of 60 complex breakpoints in the sim-

ulated data set (Table 5).

For the CCBRs, we again selected two genes, created a fusion

transcript, and generated RNA-seq reads as described above for

complex breakpoints. We then simulated a simple breakpoint be-

tween the two genes. We also simulated additional n � 1 break-

points with the structure of a CCBR. Each breakpoint was separated

by a distance ‘i from the subsequent breakpoint in the CCBR.

Values for n and {‘1..‘n} were selected from a range of possibilities

that depended on the class of difficulty (Table 6). WGSS reads were

sampled from the n breakpoints at a coverages selected from be-

tween 53 and 303. nFuse detected 54 of 60 complex breakpoints

in the simulated data set (Table 6).

nFuse predicts an additional three CCBRs and four complex

breakpoints in the simulated data set. For three of the four false-

positive complex breakpoints, the predicted sequence is identical

to the sequence of an undiscovered simulated complex breakpoint.

However, for each of these three predictions, at least one of the

shards is predicted to originate from the wrong location in the

genome. Instead, a homologous region is incorrectly predicted as

the origin of those shards. The remaining complex breakpoint and

three CCBRs also represent undiscovered simulated events with

misplaced breakpoints due to homology. Based on the simulation,

we estimate the precision of nFuse to be 0.92 for complex break-

points and 0.95 for CCBRs.

Primary prostate tumor 963

We applied nFuse to the discovery of complex rearrangements in

sample 963, a primary prostate tumor sample. We generated WGSS

data at 173 physical coverage in addition to 150 million reads of

matched RNA-seq (Wu et al. 2012b). The WGSS data produced

762,675 putative breakpoint predictions, and these were used to

construct the breakpoint graph for 963. The primary CGR feature

of 963 was CCBRs (for summaries of CCBRs and complex break-

points, respectively, see Tables 7, 8). A four-loci CCBR and three-

loci CCBR were prioritized for validation since both affected cancer

relevant genes, and each contained a breakpoint supported by

only a single read. We validated all breakpoints and fusion tran-

scripts associated with both CCBRs. We also validated a complex

breakpoint associated with the three-loci CCBR using LR-PCR.

Table 7. Summary of putative CCBRs discovered in 963

Total distance between breakpoints

No. of breaks 0–500 500–1000 1000–2000 2000–5000 5000–10000 >10000

2 7 5 2 5 4 0
3 1 1 1 2 0 0
4 1 1 1 0 1 0
5 0 0 0 0 0 1

The CCBRs are grouped by number of breakpoints and by cumulative distance between breakpoints.
Table shows counts for each group.

Table 6. CCBRs identified in a simulated data set

Class Max. distance No. of breaks Recall

A 500 2–3 17/20
B 1000 4–5 18/20
C 2000 6–7 14/20

Total 49/60
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The complex breakpoint and two CCBRs are described in detail

below.

As described by Wu et al. (2012b), the 963 tumor is significant

because it is difficult to classify in the context of established

prostate cancer biology. Although the histology of 963 is consis-

tent with a uniform cell type, the gene expression profile is sug-

gestive of a hybrid luminal/neuroendocrine phenotype. The fu-

sion genes discovered in 963 exhibit a similar hybrid pattern. Some

of the fused genes are primarily expressed in luminal cells, and

others are primarily expressed in neuroendocrine cells. A growing

body of evidence suggests that the binding of transcriptional ma-

chinery predisposes DNA to double-stranded breaks (Lin et al.

2009; Nambiar and Raghavan 2011). Thus Wu et al. (2012b) hy-

pothesized that luminal and neuroendocrine expression patterns

were present in nascent 963 tumor cells.

Among the catalog of luminal/neuroendocrine fusion genes

discovered in 963, two are of particular interest because of their

association with a CGR. Most notable of these fusions is highly

expressed HMGN2P46-MYC, a promoter exchange between the

MYC oncogene and luminal cell–specific HMGN2P46, with a

breakpoint in MYC similar to that found in Burkitt’s lymphoma

(Dave et al. 2006). Seemingly unrelated is the ARHGEF17-SHANK2

fusion involving neuroendocrine-specific

SHANK2, previously reported as fused in

melanoma (Berger et al. 2010). We have

discovered and validated a CCBR con-

sisting of four breakpoints, one of which

produces a HMGN2P46-MYC fusion and

another that produces a ARHGEF17-

SHANK2 fusion (Fig. 5A). The discovery of

a single genomic event that produces two

fusion transcripts, one involving a lumi-

nal-specific HMGN2P46 and another in-

volving neuroendocrine specific SHANK2, is evidence that tumori-

genesis occurred in a progenitor cell simultaneously expressing both

luminal and neuroendocrine specific genes.

We have also identified a CGR that is represented in the

breakpoint graph by a path and a cycle. The path represents a

complex breakpoint involving the WDTC1, PRKRIP1, and EFCAB4A

genes on chromosomes 1, 7, and 11, respectively. The complex

breakpoint was identified as the underlying genomic rearrangement

explaining several fusion transcripts. nFuse also identifies a cycle

that uses the same two breakpoints as the path, and one additional

breakpoint. Given all available information, including fusion tran-

scripts and the three breakpoints, the most parsimonious CGR is

a reciprocal translocation between chromosomes 1 and 11, with an

insertion of a 800-bp shard of chromosome 7 at one of the break-

points (Fig. 5B). Without knowledge of the fusion transcripts and

given previous interpretation of CCBRs (Berger et al. 2011), the

breakpoints may have been interpreted differently. Specifically, the

three breakpoints could alternatively represent a transformation

that produces three tumor chromosomes: a 1-7 chromosome, a 7-11

chromosome, and an 11-1 chromosome. We are able to exclude this

alternate possibility by using the fusion transcripts as a scaffold for

local reconstruction of the CGR.

Figure 5. CGRs discovered in primary tumor sample 963. (A) A single CCBR produces four fusion genes: MYC-ARHGEF17, ARHGEF17-SHANK2, SHANK2-
HMGN2P46, and HMGN2P46-MYC. Only the ARHGEF17-SHANK2 and HMGN2P46-MYC fusion genes produce fusion transcripts. (B) Example of a CGR that
is both a CCBR and a polyfusion involving three loci. The aberrant 1-7-11 chromosome produces three fusion transcripts: WDTC1-CD151, WDTC1-
EFCAB4A, and WDTC1-PRKRIP1.

Table 8. Summary of putative complex breakpoints discovered in 963

Total length of genomic shards

No. of shards 0–500 500–1000 1000–2000 2000–5000 5000–10000 >10000

1 4 1 0 0 0 2
2 1 0 0 0 0 1

The complex breakpoints are grouped by number of genomic shards and by total length of shards.
Table shows counts for each group.
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As mentioned in reference to Figure 2B, gain adjacency

edges produce CCBRs with ambiguous structures. The gain ad-

jacency edge for WDTC1-PRKRIP1-EFCAB4A was determined to

represent an insertion of a shard of chromosome 7 at a break-

point between chromosomes 1 and 11, rather than a region of

chromosome 7 duplicated in two tumor chromosomes. Thus we

sought to rule out the possibility that all gain adjacency edges

represent insertions. The MYC CCBR includes two gain adja-

cency edges. If either of these gain edges represented insertions,

it would be impossible for the MYC CCBR alone to explain

the ARHGEF17-SHANK2 and HMGN2P46-MYC fusion tran-

scripts; additional breakpoints and further complexity would

be required. Thus the most parsimonious explanation is that

the gain adjacency edges of the MYC CCBR represent regions

of chromosome 11 that are duplicated in the final tumor

chromosomes.

Discussion
We have applied nFuse to the discovery of fusion transcripts and

underlying CGRs in breast cancer cell line HCC1954 and a pri-

mary prostate tumor sample 963. The landscape of CGR events

differed between HCC1954 and 963, with complex breakpoints and

polyfusions arising as the predominant CGR feature of HCC1954,

and CCBRs arising as the predominant feature of 963. In HCC1954,

nFuse predicted seven high-confidence complex breakpoints/

polyfusions. One of these fusions is PHF20L1-SAMD12, a highly

expressed in-frame fusion missed by Stephens et al. (2009) likely

because of the complexity of the breakpoint. In fact, our results

strongly suggest that analysis of single breakpoints in isolation is

inadequate as a method for identifying fusion genes. The large size

of fragments that are interposed at the breakpoints of some fusion

genes will prevent the discovery of those fusions. nFuse is also

capable of identifying the single breakpoints underlying fusion

transcripts caused by more simple rearrangements. nFuse success-

fully recovers all four fusion transcripts identified by ShowShoes-

FTD, predicting a simple rearrangement for three and a CGR for

the forth.

In 963, nFuse identified a CGR with potential biological im-

plications. Based on existing evidence that transcribed genes are

prone to double-stranded breaks and building on the suggestion by

Berger et al. (2011) that CCBRs occur for sets of genes recruited to

the same transcriptional factory, we propose that CCBRs may be

used to infer the gene coexpression history of a tumor. In 963,

the discovery of the MYC CCBR suggests that luminal-specific

HMGN2P46 and neuroendocrine-specific SHANK2 were coex-

pressed in a single nascent tumor cell during the formation of the

CCBR. Thus the CCBR provides further evidence of the dual lu-

minal/neuroendocrine history of the 963 tumor and suggests the

unusual luminal/neuroendocrine expression pattern of the tumor

predates the formation of the MYC rearrangement.

We have used examples in both HCC1954 and 963 to high-

light the potential utility of performing an integrated analysis of

matched WGSS and RNA-seq data sets. The RNA-seq data yield

information about long-range connectivity between genomic re-

gions, acting as a set of very long genomic reads. As such, the RNA-

seq data can be useful as a scaffold for reconstructing tumor

chromosomes. In some cases the RNA-seq data can also be used to

resolve genomic architectural ambiguities, as for the two CCBRs

discussed for 963. Finally, RNA-seq can be used to identify poten-

tially interesting events such as fusion transcripts that serve as

a starting point for targeted analysis.

Many fusion genes, including those with complex origins

such as PHF20L1-SAMD12, can be detected using conventional

analysis of RNA-seq data. Nevertheless, many interesting questions

cannot be answered with a fusion transcript prediction alone. For

instance, it is impossible to measure the clonal abundance of

a gene fusion at the transcriptomic level alone, since transcript

abundance is heavily influenced by expression. Given multiple

tumor samples from the same patient, knowledge of breakpoints

will allow us to ask which samples harbor the fusion, whereas

knowledge of the fusion transcript only allows us to understand

the expression levels in each sample. Furthermore, an under-

standing of the clonal abundances of rearrangements will help

determine the evolutionary history of the tumor. The evolutionary

history will then help determine the founder status of each rear-

rangement, and which rearrangements are drivers of tumori-

genesis (Shah et al. 2012).

Finally, it has been assumed throughout this work that the

breakpoints of CGRs occur simultaneously during a single event. A

complex breakpoint with one genomic shard could also be formed

by a two independent breakage-rejoining events that occur at the

same loci at different times during the tumors development.

Similarly, a CCBR could be formed by breakage and rejoining

events occurring in succession at the same loci. Both of these

scenarios require the formation of intermediate breakpoints. In the

evolutionary history of the tumor, some cells would likely have

evolved from cells in the intermediate state without having gained

all breakpoints in the CGR. Thus we expect the intermediate

breakpoints to be present in some proportion of tumor cells, though

that proportion may be very small. To date we have not identified

any intermediate breakpoints in the sequencing data. Future work

will involve testing for intermediate breakpoints, and negative re-

sults will provide further evidence of the simultaneity of CGRs.

Data access
The nFuse source code and manual can be downloaded at http://

nfuse.googlecode.com.
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