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Figure 7.� Triciribine inhibits ZNF217 in vivo and in human cells. A, tumor burden growth rate of Vo-PyMT transplants treated with dimethyl sulfoxide 
(DMSO) solution (solid lines) or triciribine (dotted line; P < 0.0001 by genotype; P = 0.02, genotype over time; ANOVA). Vo-PyMT transplants overex-
pressed vector (blue) or Znf217 (orange). Shown are the mean ± SEM. B, phospho-AKT (left) and phospho-MAPK (right) protein expression by immuno-
histochemistry in tissues from Vo-PyMT transplants treated with either control or triciribine. C, model of pathways downstream from ZNF217. Znf217 
overexpression promotes phospho-AKT and phospho-MAPK. This activation is associated with increased tumor burden, chemotherapy resistance, and 
mammosphere formation. Triciribine can block these phenotypes of  Znf217 overexpression. D, MCF7 cells ± triciribine were serum-starved overnight and 
stimulated with heregulin/neuregulin-1β for the indicated times. Cell lysates were blotted for the indicated proteins. E, human MCF7-M1 subcutaneous 
xenografts treated with control or triciribine (50 mg/kg) at the indicated time posttransplant. Ticks show mean tumor burden ± SD. F, triciribine induces 
synthetic lethality with doxorubicin in culture. Stable HBL100 MECs (low Znf217, low adenosine kinase expression; ±Znf217) were treated with tricirib-
ine and doxorubicin at the indicated concentrations and monitored for cell death using Annexin V staining (P = 0.0002; ANOVA). All doxorubicin-treated 
samples were statistically different (P < 0.05; Bonferroni posttest), whereas triciribine treatment alone did not promote statistically signi“  cant results. 
Graph shows mean ± SEM. G, model of ZNF217 function. Increased ZNF217 promotes increased ERBB3 expression and activation of downstream signal-
ing events during tumor progression. ZNF217 may also activate other receptor tyrosine kinases (RTK) that in turn lead to activation of AKT or MAPK 
pathways. In vivo during tumor progression, triciribine can block signaling events downstream of ZNF217 overexpression.

Our study suggests that ZNF217 may be a suffi ciently predic-
tive biomarker of triciribine effi cacy if patients are also treated 
in combination with a drug such as doxorubicin or another 
drug that offers synergy with triciribine. In part, ZNF217 may 
act by inducing upregulation of its target ERBB3 (22). Thus, 
cells resistant to triciribine treatment might independently acti-
vate multiple signaling pathways, making them less responsive 
to inhibitors that act upstream in the signaling pathway.

Combinatorial pathway activation may be therapeutically 
important in treating patients with high ZNF217 expression, 

as concurrent activation of the PI3K/AKT and RAS/MAPK 
pathways causes resistance to AKT inhibition in cells (33). 
Interestingly, in the panel of immortal cell lines expressing 
ZNF217 and tested for triciribine sensitivity, all outlier cell 
lines (i.e., lines with high GI50s and high ZNF217 expres-
sion) contained previously identifi ed mutations in the PI3K/
AKT and/or RAS/MAPK pathways (34–36). Because triciri-
bine does not inhibit upstream activators PI3K or PDK1 
or related family members directly (31), future studies 
will be required to sort out mechanistically how ZNF217 
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activates and triciribine inhibits signaling. Whether com-
bination therapies will be more effective in vivo remains to 
be tested.

ZNF217 Reprograms Tumor Cells to Express 
Luminal and Myoepithelial Cell Markers

We found that ZNF217 promotes phenotypes sugges-
tive of expansion of progenitor cells in vivo and in culture 
and drives repression of an adult stem cell gene expression 
signature that is also downregulated in many epithelial 
cancers. Consistent with a progenitor phenotype, ZNF217 
promotes increased telomerase, resistance to TGFβ growth 
inhibition, amplified c-MYC (9, 37), and chemotherapy 
resistance (23). That ZNF217 may drive a less differenti-
ated gene expression signature is supported by the obser-
vation that Znf217 is upregulated in the somite following 
the transition from the presomitic mesoderm and before 
the differentiation into the skeleton, muscle, and dermis 
(38). Moreover, Znf217 is repressed concurrently with Oct4 
following differentiation of a teratocarcinoma cell line to 
neuronal cells and binds to the promoters of a number of 
genes involved in differentiation (10). Thus, in tumors, 
ZNF217 may promote transdifferentiation to or expansion 
of a pool of progenitor-like cells by aberrantly suppressing 
differentiation pathways.

Znf217 overexpression in tumor cells derived from mice 
expressing the oncogene PyMT switched their phenotype 
from a predominantly luminal to a more heterogeneous 
pathology characterized by expression of both luminal and 
myoepithelial cell markers. This phenotype is similar to 
that seen following Wnt1 overexpression or activation of 
the AKT pathway by PTEN deletion in vivo (39, 40). Interest-
ingly, the PyMT oncogene can give rise to tumors expressing 
both luminal and myoepithelial markers, depending on the 
cell type into which it is introduced. Expression of PyMT 
by intraductal injection of avian retrovirus (RCAS-PyMT) 
induces tumors with markers of luminal, myoepithelial, and 
progenitor cells (41). Recently, a connection has emerged 
between the undifferentiated, stem cell–like phenotype in 
breast cancer cells and transdifferentiation of the tumor 
cells toward a mesenchymal phenotype (reviewed in refs. 
42–44). Induction of EMT in cultured MECs not only 
increases the population of cells with mesenchymal markers 
but also increases those with progenitor cell characteristics 
(CD44high/CD24low; ref. 45).

CONCLUSIONS

We used an integrated biologic approach to model the 
multiple contributions of ZNF217 to carcinogenesis dur-
ing tumor progression, metastasis, and neoadjuvant treat-
ment. We propose that ZNF217 is a biomarker that is 
prognostic of disease progression and is a therapeutic 
target. Our data suggest that triciribine may be a com-
ponent of an effective treatment strategy in patients who 
have tumors expressing high ZNF217, possibly by target-
ing a progenitor population and reducing signaling in the 
AKT and MAPK pathways. Because ZNF217 is amplified 
in numerous cancers, this work has implications for other 
cancers as well.

METHODS
Additional descriptions of materials and methods, including cell 

lines, antibodies, and staining procedures used, are in the Supple-
mentary Data.

Cell Lines
Cell lines used in this study include mouse MECs NMuMG 

(source: Rik Derynck), SCp2 (source: Mina Bissell), EpH4 (source: 
Mina Bissell), and Vo-PyMT-Luc (source: Conor Lynch) and human 
MEC lines MCF7, ZR-75-1, and HBL100 (source: American Type Cul-
ture Collection for all 3 lines). MCF7 was authenticated by SNP6.0 
copy number analysis. Other cell lines were not authenticated.

Mouse Lines
Mice used in this study were maintained on the FVB/n background 

under pathogen-free conditions in the University of California, San 
Francisco (San Francisco, CA; UCSF) barrier facility. Our animal pro-
tocols were reviewed and approved by the UCSF Institution Animal 
Care and Use Committee.

Metastasis Analysis
Both PyMT MEC and Vo-PyMT transplants were analyzed for lung 

metastasis. To determine metastasis frequency, lung tissue blocks 
were sectioned into 5-μm sections and stained by hematoxylin and 
eosin. For each mouse analyzed, one section was scored for number 
of metastases seen at ×100 magnifi cation in 3 (PyMT MECs) or 5 
(Vo-PyMT cell line) high-powered fi elds in regions of the tissue sec-
tion with the highest density of metastases. Each cohort had 6 to 11 
mice analyzed.

Statistical Analysis
Statistical analysis was conducted using Prism 4 software (Graph-

Pad Software, Inc.) or SPSS Statistics software (IBM) for Cox pro-
portional hazard tests. Cohorts of 3 or more samples were compared 
using one-way ANOVA. All tests used and P values are specifi ed in the 
fi gure legends. P < 0.05 was considered signifi cant.

Accession Numbers
Microarray data were deposited to the NCBI’s GEO Repository 

and are accessible to readers through GEO series accession number 
GSE24727.
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