








occurred in the second GCB-type DLBCL PDXmodel, suggesting
that both GCB-type models required additional genetic drivers for
murine engraftment. In primary DLBCLs, BCL2 and MYC trans-
locations are known adverse prognostic features in GCB-type
tumors.49-53 We also noted that the DLBCL PDX model with
the t(8;14)/IgH-MYC translocation (LTL-014) had only 5% CD20-
positive cells (Figure 2; Table 1).

Mutations in the LBCL PDX models. After applying a
rigorous filter to remove common human or mouse single-nucleotide
polymorphisms, we next queried for the most frequently reported
recurrent mutations in primary DLBCLs (mutations identified as
significant in 2/4 publications19-22; supplemental Table 2). Mutations
present in at least 1DLBCLPDXmodel are included in Figure 3D and
supplemental Table 2C.

A

B

DLBCL PDX models
H&E CD20 CD10 MUM1 BCL6 BCL2 MYC

Plasmablastic Iymphoma PDX model
H&E CD20 CD10 MUM1 BCL6 BCL2 MYC

CD79a intracyt. lg� intracyt. lg�

LT
L-

03
7

LT
L-

04
8

LT
L-

03
4

LT
L-

03
0

LT
L-

02
6

LT
L-

02
5

LT
L-

01
4

LT
L-

01
3

LT
L-

00
5

Figure 2. IHC characterization of all 9 PDX models. (A) IHC analyses of the indicated markers in all 8 DLBCL PDX models, which were consistent with the diagnosis of
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One of the GCB-type DLBCL PDX models, LTL-030, had
alterations ofGNA13,CREBBP, andEZH2, all previously linked to the
GCB subtype.9,20,21 ABC-type DLBCL PDX models had a larger
spectrum of mutations, includingMYD88 in association withCARD11
and CD79B (LTL-013), PIM1 (LTL-005), or PRDM1 (LTL-034), or
CD79B with additional alterations (LTL-026), as previously reported
in primary ABC-type DLBCLs.10,12,20,21 Certain PDX models had
additional mutations, including B2M, MLL2, MEF2B, NOTCH1, and
TP53.16,17,20,21,54 None of the 37 most recurrently mutated genes in
DLBCL was identified in the PBL PDX model.

Importantly, we found that only 25% (2/8) of the DLBCL PDX
models harbored inactivatingTP53mutations (Figure 3D).Thisfinding
is consistent with the reported incidence of TP53mutations in primary
DLBCLs15,19-22,55 and unlike the near-uniform presence of TP53
somatic mutations in DLBCL cell lines.15

CNAs of TP53 and CDKN2A. We previously reported that
primary DLBCLs often exhibit CNAs of TP53 or additional modifiers
of the p53 pathway in addition to less frequent somatic mutations of
TP53.15 For this reason, we used a targeted real-time PCR assay to
assess copy numbers of TP53 and its upstream modifier, CDKN2A,
in the PDX models (Figure 3D). Five of the 8 DLBCL PDX models
(LTL-005, LTL-013, LTL-014, LTL-025, and LTL-026) exhibited
single copy loss of TP53. In LTL-013 and LTL-014, this resulted
in functional biallelic inactivation of TP53 because the second TP53
allele was inactivated by somatic mutation (Figure 3D). Because the
CDKN2A locus encodes 2 alternative transcripts, p16INK4A and
p19ARF, we assessed the CDKN2A locus with 3 separate copy
number assays that covered the representative exons in each
transcript. Two of the PDX models (LTL-025 and LTL-034) had
complete loss of all coding exons of CDKN2A, and an additional
model (LTL-005) lost both copies of the p16INK4A-encoding portion
of the gene. Two additional PDX models (LTL-026 and LTL-014)
had single copy loss of the coding CDKN2A exons. Overall, we
detected CNAs of TP53 or CDKN2A in 75% (6/8) of the DLBCL
PDXmodels and detected somatic TP53mutations in only 25% (2/8)
of models, similar to the reported incidence of p53 pathway
alterations in primary DLBCLs.15

Genetic stability of PDX models. Toevaluate thegenetic stability
of the PDX models, we compared genetic alterations in each primary
LBCL with its associated PDX model. We employed WES with the
same extended bait set to capture all mutations perturbing the protein
sequence and selected chromosomal rearrangements. The identical
chromosomal rearrangements of IgH/MYC (LTL-14) or IgH/BCL2
(LTL-030) were detected at base-pair resolution in the primary tumors
and associated PDX models (supplemental Figure 2).

We also compared the mutant allele fraction (frequency of
a mutation at a particular locus) in each of the primary tumors and

associated PDX models (Figure 4; supplemental Table 2A19-22).
Themajority of DLBCLSNVswere present at similar mutant allele
fractions in the PDX models and the original primary tumors
(Figure 4). For example, the mutant allele fractions of almost all
DLBCL SNVs were comparable in LTL-005, LTL-013, LTL-026,
and LTL-037 primary tumors and PDX models. In certain models,
select DLBCL SNVswere more common in the PDXmodel than in
the primary tumor (TP53 in LTL-014, KMT2D [MLL] and
TMEM30A in LTL-025, B2M and MEF2B in LTL-030, and
PRDM1 [BLIMP1] in LTL-034). Mutant allele fractions of hallmark
DLBCL SNVs, including MYD88, PIM1, CARD11 and CD79B,
TNFAIP3,EZH2, andPOUZF2,were similar in theprimary tumors and
PDX models. Of note, 2 common DLBCL SNVs were detected in the
primary tumors but not in the PDX models (GNA13 in LTL-014 and
TP53 in LTL-037). These data provide further evidence that the PDX
models largely capture and retain the genetic heterogeneity of the
primary DLBCLs.

Assessing integrity of BCR signaling in PDX models

After establishing and genetically characterizing the 9 LBCL PDX
models, we assessed their utility for functional analyses of BCR
signaling. To this end, we excised subrenal tumor from each of the
PDXmodels, generated viable tumor cell suspensions, and assessed
surface immunoglobulin expression by flow cytometry (Figure 5A).
Six of the 8 DLBCL PDX models had expression of surface IgM,
suggesting that thesemodels derived from non-class-switchedGCBs
(Figure 5A). The remaining 2 DLBCL PDX models and the PBL
PDXmodel had no surface IgM expression; none of the PDXmodels
had surface IgG expression (Figure 5A). Of interest, all of the surface
immunoglobulin–positive LBCL PDX models were classified as

Table 1. Clonality, and IHC characterization of the LBCL PDX models

Model ID Clonality Diagnosis

IHC, % (intensity)

CD20 CD10 MUM1 BCL6 BCL2 MYC

LTL-005 Yes (mono, FR1) DLBCL 100 Negative 70 (31) 60 (21) Negative 40

LTL-013 Yes (mono, FR2) DLBCL 90 Negative 10 (31) 20 (11) 10 (11) 80

LTL-014 Yes (mono, FR2) DLBCL 5 90 (21) 80 (21) 30( 21) Negative 99

LTL-025 Yes (mono, FR2) DLBCL 100 Negative 100 (31) 40 (11) 90 (21) 90

LTL-026 Yes (mono, FR2) DLBCL 100 Negative 50 (31) 80 (21) 70 (11) 90

LTL-030 Yes (mono, FR2) DLBCL 100 100 (21) Negative 90 (31) 90 (31) 10

LTL-034 Yes (mono, FR2) DLBCL 100 Negative 100 (31) 50 (11) 9 (11) 70

LTL-037 Yes (bl, FR1) DLBCL 70* Negative 70 (31) Negative Negative 40

LTL-048 Yes (mono, FR1) PBL Negative 20 (11) 100 (31) Negative Negative 50

*Two populations by CD20 intensity.

Table 2. Transcriptional subtypes of the DLBCL PDX models

Model ID

LTL-005
LTL-013
LTL-014
LTL-025
LTL-026
LTL-030
LTL-034
LTL-037

COD

ABC
ABC
GCB
ABC
ABC
GCB
ABC
ABC

CCC

BCR
BCR
BCR
BCR
BCR
BCR
HR

OxPhos

All DLBCL PDX models were classified using COO and CCC criteria.3,15
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BCR-type DLBCLs by CCC.5 These surface immunoglobulin–
positive BCR-type DLBCLs belonged to both COO subtypes (GCB-
type: LTL-014 and LTL-30; ABC-type: LTL-005, LTL-013,
LTL-025, and LTL-026; Figure 5A).

Next, we assessed the functional integrity of BCR signaling in
the panel of LBCL PDX models using the selective SYK inhibi-
tor entospletinib (GS-9973), which is currently in clinical trials for
multiple B-cell malignancies.56-58 Like other chemical SYK inhibitors
and molecular SYK depletion,5 single-agent entospletinib (GS-9973)
selectively blocked the proliferation of BCR-dependent DLBCL cell
lines, abrogated the phosphorylation of SYK (pSYK525/526) and down-
stream pathway components, and modulated the expression of specific
BCL2 family members (HRK and BCL2A1) in BCR-dependent
DLBCL cell lines with low- and high baseline NF-kB activity
(supplemental Figure 3).

In single-cell suspensions of the LBCL PDX tumors, entospletinib
treatment significantly decreased the proliferation of all 6 BCR-type
DLBCLs but had no effect on the non-BCR-type DLBCLs or the
PBL (Figure 5B). Given the distinctive SYK/PI3K-dependent signal-
ing and survival pathways in DLBCLs with low or high baseline
NF-kB, which largely correspond to BCR-dependent GCB- or ABC-
type DLBCLs, respectively,5 we next assessed readouts of these

pathways (Figure 5C-D). As in DLBCL cell lines (supplemental
Figure 3) and primary DLBCL patient samples,5 chemical SYK
inhibition selectively induced the proapoptotic BH3-only family
member HRK in both of the BCR-dependent GCB-type DLBCL
PDX samples (Figure 5C) and decreased expression of the anti-
apoptotic BCL2-family member BCL2A1 in BCR-dependent ABC-
type DLBCL PDX tumors (Figure 5D). These data indicate that the
molecularly characterized DLBCL PDX models faithfully reflect
defined differences in BCR dependence, downstream signaling, and
survival pathways.

Discussion

We have generated and characterized a panel of LBCL PDX models,
including 8 that reflect the immunophenotypic, transcriptional, genetic,
and functional heterogeneity of primary DLBCL. One additional
model is of the immunophenotypically and morphologically dis-
tinct LBCL subtype, PBL.45 These data indicate that implanting
fresh LBCL specimenswithin the highly vascularized subrenal capsule
of immunodeficient mice is feasible and effective, as reported for
certain solid tumors.33,34
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Our genomic characterization of human PDX models revealed the
importance of computationally subtracting murine reads in RNA-seq
data. RNA-seq data contained a higher percentage of murine reads
than DNA-sequencing data (WES), likely due to the associated
differences in library preparation. For these reasons, we eliminated
mouse-specific reads from our RNA-seq data before character-
izing the transcriptional signatures of the LBCL PDX models
and used the DNA-seq data to call mutations and chromosomal
rearrangements. These approaches to the analysis of transcriptional
signatures and mutation calling will be broadly applicable across
tumor types.

Applying the RNA-based COO classification to the DLBCL PDX
series, 6 of 8 models were classified as ABC type and 2 as GCB type.
The higher engraftment rate of ABC-type DLBCL PDX models may
reflect the more aggressive course of the clinical disease.59 Of interest,
5 of 6 ABC-type PDX models had additional genetic alterations of
p53/cell cycle pathway components, including 3 models with biallelic
loss ofCDKN2A, 1model with biallelic inactivation of TP53 (mutation
and single copy loss), and anothermodelwith single copy loss ofTP53.
Furthermore, the 2 GCB-type PDX models had additional adverse
genetic features: t(14;18)/IgH-BCL2 translocation or t(8;14)/IgH-MYC
translocation.49-53 The GCB-type PDX model with the MYC trans-
location also had biallelic inactivation of TP53 (mutation and single
copy loss). In this initial series of DLBCL PDX models, tumors with
more aggressive genetic features are overrepresented, suggesting that
such lymphomas may engraft more readily in NSG mice. These

findings are consistent with those in solid tumors in which
engraftment and PDX generation were adversely associated with
patient overall survival.27,60

By performing WES of the DLBCL PDX models, we identified
mutations associated with COO subtype (ABC: MYD88, CD79B,
CARD11, and PIM110,12,21; GCB: GNA13, EZH2, and CREBBP8,9,61)
and additional reported alterations (B2M, MLL2, TNFAIP3, and
MEF2B).6,15-17 Only 25% (2/8) of the DLBCL PDXmodels harbored
inactivating TP53 mutations, whereas 75% (6/8) of tumors exhibited
CNAs of TP53 or its upstream modifier, CDKN2A. These data are
consistent with the reported incidence and type of TP53 alterations in
primary DLBCLs and contrast sharply with the near-uniform presence
of inactivating TP53 mutations in DLBCL cell lines.15 For these rea-
sons, theDLBCLPDXpanel maybe particularly useful for the analysis
of p53 mimetics62 or MDM2/MDM4 inhibitors63 which require wild-
type p53 activity.

By comparing the mutant allele fraction in primary LBCLs and the
associated PDXmodels, wewere able to assess the stability of the PDX
genetic signature. Most of the LBCLmutations were present at similar
allele fractions in the PDX models and the associated primary tumors,
indicating that thesemodels largely retain the complexgenetic signature
of primary LBCLs.

As noted, 6 of the DLBCL PDXmodels were identified as BCR
type based on CCC transcriptional profiles, including 4 ABC-type
and 2 GCB-type tumors. The BCR-type DLBCLs were selectively
surface IgM positive and sensitive to chemical inhibition of SYK
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using entospletinib. As in our previous studies,5 the readouts of
SYK inhibition differed in BCR-dependent ABC- and GCB-type
DLBCL PDX models: downregulation of NF-kB targets such as
BCL2A1 in ABC-type tumors vs HRK upregulation in GCB-type
tumors. These studies highlight the utility of having a diverse and
well-characterized DLBCL PDX panel for evaluating targeted
inhibitors of subtype-specific survival programs. In addition, these
studies illustrate the usefulness of PDXmodels as a renewable source
of viable tumor cells for the analysis of sensitivity and resistance to
novel targeted agents.

In summary, we have established a molecularly characterized
and faithful panel of PDX models of primary DLBCL and PBL
and demonstrated their usefulness in evaluating proximal BCR
pathway inhibition. We anticipate that the panel of LBCL PDX
models will facilitate rational target identification and pre-
clinical drug discovery. In addition, the associated insights
regarding both the establishment and the molecular character-
ization of the LBCL PDX models will be broadly applicable to
other tumor types.
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