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Abstract

RNA editing modifies the sequence of primary transcripts, potentially resulting in profound effects to RNA structure and
protein-coding sequence. Recent analyses of RNA sequence data are beginning to provide insights into the distribution of
RNA editing across the entire transcriptome, but there are few published matched whole genome and transcriptome
sequence datasets, and designing accurate bioinformatics methodology has proven highly challenging. To further
characterize the RNA editome, we analyzed 16 paired DNA-RNA sequence libraries from prostate tumor specimens,
employing a comprehensive strategy to rescue low coverage sites and minimize false positives. We identified over a
hundred thousand putative RNA editing events, a third of which were recurrent in two or more samples, and systematically
characterized their type and distribution across the genome. Within genes the majority of events affect non-coding regions
such as introns and untranslated regions (UTRs), but 546 genes had RNA editing events predicted to result in deleterious
amino acid alterations. Finally, we report a potential association between RNA editing of microRNA binding sites within 39
UTRs and increased transcript expression. These results provide a systematic characterization of the landscape of RNA
editing in low coverage sequence data from prostate tumor specimens. We demonstrate further evidence for RNA editing
as an important regulatory mechanism and suggest that the RNA editome should be further studied in cancer.
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Introduction

The deregulation of post-transcriptional modification is increas-

ingly recognized as a hallmark of cancer, generating enormous

diversity and significantly affecting downstream activity. RNA

editing is a process by which the sequence of primary transcripts is

modified, resulting in RNA-DNA sequence differences (RDDs).

The most common type of RNA editing results from action of the

adenosine deaminase acting on RNA (ADAR) class of enzymes,

which catalyze the conversion of adenosine (A) to inosine (I) in

double stranded RNA [1]. ARI editing is highly prevalent within

inverted-repeated Alu elements due to their propensity to form

double-stranded RNA structures [2,3]. However, RNA editing

also affects introns and untranslated regions (UTRs) of genic

transcripts (partly due to the presence of Alu elements within these

regions), where substitutions can modulate splicing or RNA

structure [4,5]. Indeed, a recent study reported that RDDs were

enriched in 39UTRs and microRNA target sites in mouse tissues,

suggestive of a regulatory role for RNA editing [6]. Moreover, a

database of predicted ARI editing miRNA binding sites has been

built[7]. Furthermore, since inosine base pairs with cytidine, and is

interpreted by the translational machinery of a cell as guanine,

RNA editing can cause non-synonymous changes to coding

regions, although to date only a few genes have proven to be

recurrently altered in this manner [8,9]. The most notable

recurrently edited site falls within the second transmembrane

domain of mammalian glutamate receptor subunits, where it

results in a Q to R substitution, thereby controlling calcium

permeability[10].

The advent of whole transcriptome sequencing has permitted

systematic discovery of RNA edits, and huge numbers of putative

RNA editing sites are being reported across the genome

[11,12,13]. Unfortunately, designing accurate bioinformatics

methodology with low false positive rates has been fraught with

challenges since true RNA editing events are difficult to distinguish

from sequence or mapping errors, or even DNA polymorphisms

and somatic mutations.

Prostate cancer is a leading cause of cancer-related death [14].

Recent whole genome and transcriptome sequencing studies of

hundreds of prostate tumors have defined novel molecular

subtypes and characterized extensive genomic aberration
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underlying disease initiation and progression [15,16,17]. RNA

editing deregulation has begun to be linked to cancer, including in

hepatocellular carcinoma, where recurrent editing of AZIN1
promotes pathogenesis [8,18,19]. However, there have been no

reports to date in prostate cancer. Here, we present analysis of 16

paired DNA-RNA sequence libraries from prostate tumor

specimens, employing a comprehensive strategy to rescue low

coverage sites and minimize false positives. We identified

thousands of recurrent putative RNA editing sites across

transcriptome, including hundreds predicted to result in deleteri-

ous amino acid alterations. Finally, we report a potential link

between RNA editing of microRNA binding sites and up-

regulation of the edited transcripts. Overall our results provide a

systematic and unbiased characterization of RNA editing features

in low coverage sequence data from prostate tumor specimens. We

demonstrate further evidence for RNA editing as a regulatory

mechanism and suggest that the RNA editome should be further

studied as a mutational mechanism in prostate cancer.

Results

Rescue of RNA-DNA different (RDD) sites with low DNA
coverage

Using an in-house bioinformatics pipeline (Methods; Figure 1),

we predicted RNA-DNA differences (RDD) in a cohort of

published matched whole genome and transcriptome sequencing

data from 16 prostatic cancer specimens (9 different patients and 2

cell lines; Table S1 in File S2). There are few studies which publish

matched whole genome and transcriptome sequence data and as

such we were restricted to using a disparate cohort comprised of

different prostate tumor sub-types. Nevertheless, the detection of

putative RNA editing events in next-generation sequence data is

an emerging area of research, and we hypothesized that a deep

systematic analysis of RDD sites (even in a limited sequence

cohort) would provide novel insights into global RNA editing of

the human transcriptome and guide future studies. We employed a

stringent filtering strategy to minimize false positives (see

Methods), excluding predicted RDDs which were: i) known

polymorphisms or mutations; ii) supported by any DNA-seq read

from any specimen; iii) mapped to within 8 bp of splice sites; iv)

better explained by murine contamination; and v) within regions

aligning to paralogous genes or repeats. After filtering we

predicted a total of 109,690 RDDs, 56,114 which were low

coverage sites salvaged by our rescue strategy (see Methods)

necessitated by the low coverage (,4X) of DNA-seq data. Previous

studies have demonstrated that the most common type of RNA-

editing event is ARI, mediated by ADAR [20], which is especially

pervasive in Alu repeats (89.3% to 97.5% of sites)

[12,13,14,15,16,17,21,22,23]. Therefore, to evaluate the suitability

of including low coverage RDD sites in downstream analysis we

considered the type of RNA edit predicted at these sites. We

divided genomic regions into 3 categories: Alu repeats, non-Alu

repeats and non-repeat regions. Among high coverage RDDs sites

(i.e. those which reached the average sequencing depth of

concordant genotype sites) in Alu repeats, 97.69% were ARG

(or TRC, since we performed non-strand specific RNA sequenc-

ing). However, upon inclusion of rescued low coverage sites, the

detection of ARG (TRC) RDDs in Alu repeats was slightly

increased (98.09%), and the ratio of ARG (TRC) sites across the

genome improved from 69.59% to 75.37% (Figure 2A-C; Table

S2 in File S2). If we assume that all non-ARG (TRC) sites in Alu

repeats reflect false positives, then the FDR (false discovery rate) of

our prediction is 1.9%. As a final check, we simulated our rescue

strategy using a second sequence dataset of matched DNA-RNA

from the LNCaP cell line which has higher coverage of DNA-seq

(,27X) and RNA-seq (,33X) (Table S1 in File S2). We down-

sampled the dataset, removing 30%, 50% or 70% of the reads,

before applying the same criterion of read depth as for the whole

dataset to call and refine RDD sites. From 30% down-sampling,

we still detected 91.62% of the high-coverage RDD sites originally

called from the whole dataset. Moreover, 71.28% of these were

salvaged by our rescue strategy. When we down-sampled by 50%

and 70%, 77.68% and 56.14% of the original high-coverage RDD

sites were detected, and all rescued by our method (Figure S1 in

File S1). Additionally, all there were no ‘new’ RDD sites detected

in down-sampling simulations that were not detected in the entire

dataset, suggesting that the rescue strategy does not generate new

false positives. Moreover, the RDDs validation success rate (by

Sanger sequencing; described below) did not differ substantially

between high and low coverage RDD sites (88% and 70%

respectively). Thus we concluded that our rescued low coverage

RDD sites merited continued consideration.

The types of RDD sites identified
Although the overall number of RDDs predicted in each sample

was tightly linked to sequencing depth (R2 = 0.86; Figure 2D), the

distribution of RDD types was largely invariable between samples,

regardless of genomic location (R2 ranging from 0.91 to 1)

(Figure 2E, Figure S2 in File S1 and Table S3 in File S2).

Globally, the majority of all RDDs (72,398 [65.63%]) fell in

repeat regions, 84.46% of which were in Alu repeats (Figure 3A).

In non-Alu repeat regions, ARG (TRC) sites were less pervasive

(66.04%), giving way to more CRT (GRA) sites (14.63%),

potentially due to the activity of members of the APOBEC enzyme

family[24,25] (Figure 2E; Figure S3 in File S1). This trend was

more overt in non-repeat regions, with the proportion of ARG

(TRC) sites falling to 40.91% and CRT (GRA) sites increasing to

26.86%. Although non-canonical substitution types were much

less abundant (e.g. 0.15% of RDD sites in Alu repeats), they were

more prevalent in non-repeat regions (Table S2 in File S2; Figure

S2C in File S1).

We compared our RDD sites with the database of RNA editing

(DARNED) [26]. Although only 4.14% of our ARG (TRC)

RDD sites across the whole genome were also represented in

DARNED (8.46% of the DARNED database), those sites were

more likely to be recurrent (P,0.0001; Fishers exact test).

However, when considering commonly edited genes (including

exonic, UTR and intronic regions), rather than specific RDD sites,

8.68% (875/10,081) of the genes with ARG (TRC) RDDs were

edited in DARNED (out of 2,390 genes) (Table S4 in File S2).

Despite this increase in enrichment at the gene level, the

DARNED database is clearly not yet fully comprehensive.

RDDs are enriched in conserved regions and more likely
to be recurrent

The majority of RDDs (64.41%) were unique to a single

specimen (Figure 3B), but this ratio varied according to location,

with repeat regions exhibiting the highest abundance of unique

RDDs (72.28% and 75.22% of RDDs in Alu and non-Alu repeats

respectively). Conversely, only 48.24% of RDDs in non-repeat

regions were unique (Figure 3C). Furthermore, within genic

regions the exons were most likely to harbor recurrent RDDs (.

60% of RDDs in exons), followed by UTRs and introns

(Figure 3D). These exonic recurrent sites may therefore represent

functionally conserved elements or motifs, while the UTR and

intronic RDDs may be partly driven by Alu elements within those

regions (Table S2 in File S2). RDDs were generally enriched in

conserved regions (Table S5 in File S2), with 18.01% (19,758) of
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total RDDs located in 9,684 conserved elements predicted by

phastCons algorithm [27]. These RDDs included 63.03% and

72.13% of all detected coding RDDs and ncRNA RDDs

respectively. The frequency of RDDs within conserved regions

was 8,529.4 RDDs per Mb; significantly higher than the RDD rate

across all edited transcript regions (1,005.6 RDDs per Mb). It is

possible that RDDs play an important role in post-transcriptional

regulation through altering conserved functional regions. Alterna-

tively, although we stringently filtered out all RDDs mapping to

paralogous genes or to the mouse genome contamination, we

cannot rule out the possibility that some of these sites, especially

non-canonical sites, are false positives caused by mapping errors

[20]. However, it is important to note that if we considered only

high coverage RDD sites the percentage of recurrent RDDs was

,35%, similar to the frequency of high and low coverage RDDs

combined, further indicating the usability of low coverage sites.

ARG sites exhibited pronounced clustering
Consistent with previous reports [23], a large proportion of

RDDs (46,875 [42.73%]) fell in clusters (see Methods) especially in

ncRNAs (59.57%) and UTRs (57.61%) (Table S6 in File S2).

ARG (TRC) sites in particular fell in clusters, accounting for

81.23% of all clustered sites (when ARG (TRC) sites account for

only 75.37% of all RDDs). Over 90% of clusters involved

exclusively ARG (TRC) RDDs, which would be consistent with

regions of dsRNA being resolved by ADAR [28].

The distribution of RDDs within genic regions
Across the cohort 12,642 genes were affected by RDDs within

exonic, intronic, UTR or non-coding RNA regions. Most RDD

sites (63.05%; range 60.1%-77%) resided within intronic and non-

coding RNA regions, potentially related to enrichment of Alu

elements (Table S7 in File S2; Figure S4 in File S1). However, the

Figure 1. The computational workflow employed to detect RDDs. The thickness of the arrowed lines loosely illustrates the number of
candidate RDDs passing each filter.
doi:10.1371/journal.pone.0101431.g001
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relative proportions of intronic RDDs and ncRNAs varied

considerably, presumably due to overlapping annotations as many

ncRNAs fall within introns (81% of all spliced human protein-

coding genes have transcriptionally active introns [29]). It is well-

established that both introns and ncRNAs exhibit secondary

structure [30,31], potentially enabling the activity of RNA editing

enzymes. Nevertheless, on average over 14% of RDDs fall in

ncRNAs. Conversely, when one considers SNVs supported in both

DNA and RNA, only 1.3% fall in ncRNAs (introns 48.9% vs

64.5%). It is therefore conceivable that RNA editing is a far more

relevant mechanism of plasticity in ncRNAs than SNVs.

In mature mRNAs (i.e. coding regions and UTRs), half (46.3%)

of RDDs reside in 39UTRs that frequently contain highly

conserved elements targeted by miRNAs or RNA-binding proteins

[32,33]. This enrichment supports previous observations that

RNA editing plays an important role in transcript expression

regulation through creating or interrupting functional motifs [34].

4.08% of total RDDs reside within coding regions (Table S7 in

File S2; range from 0.98% to 8.1% in individual samples), half of

which are amino acid altering (non-synonymous). This is

comparable to paired DNA-RNA SNVs in this dataset where

50% of coding mutations were non-synonymous. CC13 was an

exception, with 8.1% of RDDs falling within coding regions, but

only 18.7% of those were non-synonymous RDDs. Overall, only

34.9% of sites in coding regions were ARG (TRC), another

30.5% were CRT (GRA) (Table S2 in File S2) which is known to

be more frequent in coding regions, partly due to higher GC

content and frequency of CpG methylation.

Considering genes which were recurrently edited, regardless of

specific RDD site, there were 2,898 genes with RNA editing to

exonic regions detected in $2 samples (Table S8 in File S2).

Furthermore, we noted that the correlation of RDD frequency

within genes between pairs of samples was much stronger when

comparing related samples (e.g. from the same patient or tissue) to

Figure 2. The distribution of RNA-DNA differences across the prostate cancer genome. A) RDD site type, whether high-coverage (HC) or
high and rescued low coverage (LC) combined sites in Alu regions or across the whole genome showing the pervasive nature of ARI (ARG or TRC)
edits. B) Distribution of RDD type in Alu repeats for each sample. C) Distribution of RDD type across whole genome for each sample. Note the increase
in the proportion of CRT (GRA) sites in CC15 and CC16. D) The number of mapped DNA/RNA reads after duplicate removal (stacked areas in green
and purple) in each sample plotted together with the number of high/low coverage RDDs (stacked columns in blue and red) predicted,
demonstrating a broad correlation between read depth and the number of RDD predictions. E) RDD site type distribution across the genome
showing that CRT (GRA) sites are more common in non-repeats and exonic regions, potentially mediated by members of APOBEC family of RNA
editing enzymes.
doi:10.1371/journal.pone.0101431.g002
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Figure 3. RDD density and frequency distribution. A) Circos plot depicting the landscape of RNA editing in a representative chromosome
(chr8) across the cohort. The relationship between Alu element density (brown line) and ARG (or TRC) RNA editing events (blue dots) is clear. B)
Recurrence distribution of all RDDs across the cohort, e.g. 70,652 were unique to one sample, 16,194 in two samples etc. C-D) Recurrence distribution
of recurrent RDDs in different regions of the genome.
doi:10.1371/journal.pone.0101431.g003
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unrelated: outperforming the same analysis using gene expression

(Table S9 in File S2). RDD detection is biased by gene expression,

but this data suggests that the RDDs we detected were broadly

tissue or patient specific.

1552 RDDs in 910 genes were predicted to result in non-

synonymous changes (including stop-codon gain or loss) to peptide

sequences, and 369 of these genes (566 RDD sites) were recurrent

(Table S8 in File S2). 546 genes had predicted ‘deleterious’

substitutions (Table S10 in File S2), including GRIK1, a kainite

glutamate receptor, which harbored the well-studied Q to R

substitution in the second transmembrane domain (Table S11 in

File S2). Other examples included an RDD in the non-receptor

tyrosine-protein kinase ABL2 which was predicted to substitute a

highly conserved S for a Y within the protein kinase domain.

Additionally, 33% (180/546) of genes with deleterious substitu-

tions of RNA editing have been reported to be mutated in several

previous studies of prostate cancer [15,16,17,35], suggesting a

relative enrichment (Fisher’s exact test P = 0.0146). Furthermore,

the most enriched ‘Bio Functions’ from Ingenuity Pathway

Analysis of the 546 genes with deleterious substitutions were

‘Cellular Movement’ and ‘Adenocarcinoma’, suggesting that some

of the non-synonymous events could be disease-relevant.

An association between RDDs in miRNA target regions
and increased transcript expression

We hypothesized that RDDs in miRNA target regions (mirT

RDDs) could affect transcript expression through avoidance of

miRNA mediated regulation. In our dataset 3,023 RDDs were

located within 6,451 miRNA target regions (1,027 miRNAs and

1,334 genes). 619 (46.4%) affected genes were unique to individual

samples, but 140 (10.49%) were observed in more than half of the

cohort (Table S12, S13 in File S2). We compared transcript

expression of protein coding genes with and without mirT RDDs,

but aware that our original ability to identify RDDs was influenced

by transcript expression, we included only transcripts where

sequencing coverage was greater than 10X. Of the 1,334 genes

affected by mirT RDDs, 1,068 had evaluable expression.

Remarkably, we observed that 65.1% of these genes had higher

expression when affected by a mirT RDD (Table S14 in File S2;

Figure 4A-B), rising to almost 75% of genes when considering only

those with a logFC .1 in either direction. Furthermore,

comparing only genes that had more than 2 specimens in each

group (i.e. with or without mirT RDDs), revealed that 114 genes

had significant upregulation when affected by a mirT RDD

compared to just 1 gene that was significantly down-regulated (p,

0.05; t-test). As a negative control we carried out the same analyses

for coding region RDDs (crRDDs). We found that 52% (592/

1,139) of genes had higher expression when affected by crRDDs: a

result approaching random selection, and one that did not change

when we considered only those genes with logFC .0.5 or 1 in

either direction (Figure 4B). Overall therefore, the proportion of

up-regulated genes with mirT RDDs was significantly higher than

that of up-regulated genes with exonic RDDs (Fisher’s Exact Test

p = 2.7E-10), potentially suggesting that altering miRNA target

regions through RNA editing has a positive effect on transcript

abundance.

Since archival clinical material was extremely limited (and

entirely absent for several specimens) we focused validation efforts

on mirT RDDs identified in up-regulated genes with potential

links to cancer. By PCR amplification of gDNA/cDNA and

Sanger sequencing, we examined all mirT RDDs in those genes

that were picked purely based on potential biological impact.

Although validation of RNA editing events is notoriously difficult

given their often transient nature and abundance variation as well

as the insensitivity of Sanger sequencing of cDNA for low-level

editing, we successfully validated 18/25 (72%) RDD sites,

including those in CCNYL1, DDX58, POLH, ZYG11A, RABL5
and RABEP2 (Figure 4C, Table S11 in File S2). RABL5 is a

putative member of the RAS oncogene family, and RABL5 up-

regulation in a large clinical cohort of prostate tumors was

associated with poor survival (p = 0.028) [36]. DDX58 is a putative

RNA helicase implicated in RNA binding and alteration of RNA

secondary structure. CCNYL1 is a crucial regulator of cell cycle

transitions, and is up-regulated in prostate cancer

[37,38,39,40,41,42]. Furthermore, the four validated mirT RDDs

in DDX58 and CCNYL1 resided in binding regions of miRNAs

hsa-miR-10b, hsa-miR-98 and hsa-miR-122, which have all been

reported to be dysregulated in prostate cancer relative to adjacent

benign[43]. Other notable genes with mirT RDDs included

KIAA1324 and ANAPC16. The estrogen regulated gene

KIAA1324 (EIG121) is expressed .4X higher in the 8 specimens

that exhibit mirT RDDs than those that did not. KIAA1324
(EIG121) regulates autophagy and promotes cell survival under

stress, and increased expression is associated with poor prognosis

[44,45]. ANAPC16 is a component of the anaphase promoting

complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin

ligase that controls progression through mitosis and the G1 phase

of the cell cycle.

To further confirm the reliability of our RNA editing discovery

pipeline, we performed a second round of PCR validation in an

independent set of 15 additional prostate cancer samples,

including three tumors of Gleason score 6, two samples each

from Gleason score 7, 8, 9, and 10, and 4 matched adjacent

benign samples. We assessed matched cDNA and gDNA from

these samples for the presence of the 18 different mirT RDDs

validated above. Aside from a single RDD site in the gene

ZYG11A, all mirT RDDs were successfully detected in this second

cohort, with RNA editing ratios ranging from 5% to 95% by visual

estimation of Sanger sequencing trace (Table S15 in File S2).

There was no strong association between tumor Gleason grade

and RNA editing ratios, although tumor samples of Gleason score

9 and 10 showed higher RNA editing ratios on average. Within

the four matched tumor-benign pairs examined, two had a higher

average RNA editing ratio in the tumor sample compared to the

matched benign tissue (11% and 14% higher respectively) while

the other two pairs showed a similar RNA editing level and a

decrease of RNA editing ratio respectively. It is noteworthy that

four samples (one of Gleason score 6, two of Gleason score 7 and

one of Gleason score 8) showed very low RNA editing ratios,

which may suggest that RNA editing is not highly active in some

tumors, potential representing another layer of inter-tumor

heterogeneity.

By examining the expression of genes with mirT RDDs in six

published microarray datasets [37,38,39,40,41,42], we found that

54.78% (ranging from 51.02% to 60.03%) up-regulated genes with

mirT RDDs were also up-regulated in primary PCa relative to

benign samples. This ratio dropped to 50.46% (ranging from

45.05% to 55.33%) when overlapping down-regulated genes with

mirT RDDs with up-regulated genes in microarray datasets (Table

S16 in File S2, Figure 5 in File S1). Although this difference is not

significant, the fact that the same trend was present in each of the

six microarray datasets is noteworthy. Pathway analysis on all up-

regulated genes with mirT RDDs (logFC .0.5), implicated

‘Cancer’ as the most enriched ‘Bio Function’.

Finally, using the LNCaP cell line, we validated further 10

RDDs (out of 12 sites randomly selected; validation rate 83%)

residing in protein-coding or non-coding transcripts (Table S11 in

File S2). Combining these sites together with those described

Characterization of RNA Editing in Prostate Tumors
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above revealed that the overall validation rate did not differ

substantially between high and low coverage RDD sites (88% and

70% respectively). Furthermore, the GRIK1 exonic site, which was

also validated, was a low coverage RDD (Table S11 in File S2).

Discussion

This is the first comprehensive evaluation and characterization

of RNA editing using prostate tumor specimens, reporting over a

hundred thousand putative RNA editing events, more than a third

of which were recurrent. The challenge of low DNA sequencing

Figure 4. Association of microRNA target RDDs with gene expression. A) Distribution of the difference in expression of genes between
samples with and without RDDs (log[FoldChange]). The proportion of up-regulated genes is higher when considering transcripts affected by miRNA-
target RDDs (purple dots) compared to the proportion of genes up-regulated when affected by coding region RDDs (blue dots). B) Bar chart
depicting the number of up/down-regulated genes when affected by miRNA-target RDDs (left) or coding region RDDs (right). The differentially
graded blocks in each bar represent the number of genes under different cutoffs of log(FoldChange) (1, 0.5, 0, -0.5, -1), with the numbers besides bars
indicating the proportion of genes under the cutoffs. For example, in genes with mirT RDDs (purple bar), 65.1% of genes were up-regulated with
logFC .0 while 34.9% of genes were down-regulated with logFC ,0; and 35.4% of genes were up-regulated with logFC .0.5 while 14.1% of genes
were down-regulated with logFC ,-0.5. C) Representative examples of Sanger sequencing validations of miRNA-target RDDs in the genes CCNYL1,
DDX58, RABL5 and RABEP2 (complete list in Table S11 in File S2).
doi:10.1371/journal.pone.0101431.g004

Characterization of RNA Editing in Prostate Tumors

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e101431



coverage and extremely limited validation material demanded a

stringent rescue strategy for RDD site identification, which is likely

to be applicable to other datasets. The prediction of RNA editing

events from transcriptome sequencing data is an emerging field,

and there is no consensus methodology for analyses. This is

confounded by the fact that most sequence datasets are not

generated with RNA editing analyses explicitly in mind, and

therefore do not feature ideal sequence depth and library quality,

or the number of biological replicates, sufficient for optimizing

accurate interrogation of the RNA editome [46]. Furthermore,

there is also significant debate surrounding exactly what results to

expect, in terms of the nature of base substitutions and the

distribution and recurrence of RNA editing across the genome. In

this context our results demonstrate that it is possible to use low

coverage sequence data from a cohort designed for a completely

different hypothesis, yet still generate insights to help guide future

studies. Given the increasingly recognized importance of low

abundance cell populations (e.g. cancer stems cells) in heteroge-

neous tumors our low coverage rescue strategy may have

applicability beyond shallow sequence datasets. It is also worth

noting that although our cohort is clearly limited, to our

knowledge it still represents the largest number of cancer samples

subjected to a comprehensive RNA editing analysis to date.

Emergent predictions were of high confidence as evidenced by:

the proportion of canonical edits predicted; the high correlation of

edited genes between related samples; the de novo detection of

known RNA editing events (e.g. in GRIK1); and our PCR-based

validations. Our data demonstrated a potential link between RNA

editing of microRNA target regions and increased gene expres-

sion. It is possible that RNA editing is directly responsible for this

increase in transcript abundance, by preventing binding of

microRNAs and thereby causing the transcript to escape

microRNA-mediated regulation. Although the differential expres-

sion of specific transcripts was not drastic, this is consistent with

reports suggesting the effect of miRNA on transcript destabiliza-

tion is at low-to-moderate levels[47,48].

The sequencing of over 200 prostate cancer exomes in the last

two years has yielded few highly recurrent mutated genes, and

none which links robustly to clinical outcome [15,16,17]. Although

the disparate nature of our cohort prevented systematic discovery

of cancer-specific or prognostic editing events (e.g. similar to

AZIN1 in hepatocellular carcinoma [8]), over 500 genes had

RDDs predicted to result in deleterious amino acid substitutions, a

large proportion of which were recurrent. Interestingly, a recent

study of copy number alterations in 125 localized prostate tumors

identified a recurrent amplification of region of chromosome

1q22.3, spanning the ADAR gene, that was significantly associated

with early prostate cancer specific mortality [49]. Clearly

therefore, future studies of large prostate tumor cohorts (with

appropriate sequencing depth and matched benign) are urgently

warranted to evaluate RNA editing as a mutational and regulatory

mechanism. Given the inherent flexibility of RNA editing it may

be particularly pertinent to identify RDDs in the context of the

epithelial plasticity frequently observed in prostate tumors exposed

to hormone therapy.

In conclusion, the characterization of RNA editing from RNA

sequence data is an emerging field, rife with complexities and

controversy. We present a detailed characterization of the

landscape of RNA editing in low coverage sequence data from

16 prostate tumor specimens, using a systematic approach which is

likely to be applicable to other studies. Our data demonstrates

further evidence for RNA editing as an important regulatory

mechanism and suggest that the RNA editome be further studied

in cancer.

Methods

Samples and sequencing
We assembled matched whole-genome sequencing (DNA-seq)

and transcriptome sequencing (RNA-seq) data from three previous

studies performed in our laboratory. This data spanned 10

prostatic tumors from primary and metastatic sites of 6 patients

[50,51,52], 2 cell lines (LNCaP and C42) [50], and 2 patient

derived xenograft tumors from 1 patient [53,54]. We added to this

dataset a further patient-derived xenograft tumor from another

patient [54]. Sequencing was performed at BCCA Michael Smith

Genome Sciences Centre according to standard protocols that

have been described in [55]. Detailed information is provided in

Table S1 in File S2. Data is available at ftp://guest:guest@ftp.

prostatecentre.com/RNA-editing/. For additional validation of

RNA editing events, we assembled an independent set of prostate

cancer samples, which were collected from patients undergoing

radical prostatectomy and snap frozen according to the current

Vancouver General Hospital pathology protocol. All patients

signed a formal consent form approved by the ethics board. For

DNA isolation, digestion of 100 mm snap-frozen tumour tissue

with 0.2 mg/ml Proteinase K (Roche) in digestion buffer (50 mM

NaCl, 10 mM Tris-HCl (pH 8.3), 1 mM EDTA and 0.5% SDS)

was carried out overnight at 55uC. Samples were incubated with

RNase solution at 37uC for 30 minutes and treated with protein

precipitation solution followed by isopropanol precipitation of the

DNA. The DNA was further purified by Phenol:Chloroform:I-

soamyl Alcohol (25:24:1), and precipitated by adding 1/10th

volume of 3M sodium acetate and 2.5 volumes of 100% ethanol,

before re-suspension in TE. RNA from snap-frozen tissue was

isolated using the mirVana Isolation Kit from Ambion (AM 1560).

Mapping and data processing
DNA-seq reads were aligned onto the human reference genome

(hg19/GRCh37) using BWA (0.5.9-r16) [56] allowing 1nt

mismatch at most in a 24nt seed. For RNA-seq, reads were

mapped onto the hg19 genome and exon-exon junctions by splice-

aware aligner Tophat (v1.4.1) [57], using the known gene model

annotation from Ensembl release 62. Reads with an unmapped

mate or multi-mapped location were filtered out using Bamtools

(1.0.2) [58] and PCR or sequencing optical duplicates were

marked and removed by Picard (1.55) (http://picard.sourceforge.

net). Using NCBI dbSNP build 132, multiple sequence local

realignment around InDels and base quality recalibration was

performed by GATK (1.4) (The Genome Analysis Toolkit) [59] to

correct likely misalignments. Integrating DNA/RNA sequencing

data of all specimens, SNVs/InDels were identified and filtered by

GATK [60] to achieve high-confidence sites (strand bias, base

quality, mapping quality and position bias were taken into

account). Additionally for RNA-seq data, we used samtools

(0.1.18) [61] to call SNVs/InDels, and retained as high-confidence

only those sites which were concordant between both GATK and

samtools results. All variants were annotated with genic regions

and potential consequences on protein-coding sequences using the

tool AnnoVar [62]. The effect of non-synonymous SNVs on

protein function was assessed using Condel [63], a method which

integrates several predictive tools (e.g. SIFT, Polyphen2, Muta-

tionAssessor).

Based on the alignment of RNA-seq reads, gene expression

profiles for each sample were calculated based on the gene

annotation (Ensembl release 62). Only reads which were unique to

one gene and exactly corresponded to gene structure were

assigned to the corresponding genes. Raw read counts were

normalized by R package DESeq (1.10.1) [64], which was

Characterization of RNA Editing in Prostate Tumors

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e101431

ftp://guest:guest@ftp.prostatecentre.com/RNA-editing/
ftp://guest:guest@ftp.prostatecentre.com/RNA-editing/
http://picard.sourceforge.net
http://picard.sourceforge.net


designed for gene expression analysis of RNA-seq data across all

samples (Table S17 in File S2).

The identification of RNA-DNA differences
For each tumor specimen, genotypes of all sequenced DNA and

corresponding RNA sites were compared, and separated into 2

categories, either concordant sites (where the DNA genotype

matched that of the RNA) or discordant sites (where the DNA and

RNA genotype was different).

1. For concordant sites we further divided into 3 subcategories by

genotype: homozygous reference (AA), heterozygous (AB) and

homozygous variant (BB). For homozygous reference we

calculated the average counts of reference DNA reads on all

sites (CDNA, AA). For the 2 other subcategories we calculated the

average counts of variant RNA reads (CRNA, AB, CRNA, BB).

2. For discordant sites, the following criteria were used to

determine high coverage RDD sites:

a. Homozygous reference in DNA (AA) and reference read

counts . CDNA, AA (described above);

b. Non-Homozygous reference in RNA (AB or BB) and

variant read counts . CRNA, AB or CRNA, BB;

Because our DNA-seq coverage was relatively low (,4X), we

were aware that utilization of the above method alone would miss

many potential RDD (RNA-DNA difference) sites, and as such we

employed the following method to rescue low coverage RDD sites.

For each discordant site with a homozygous reference on the DNA

(under the assumption that every site was edited), we integrated

RNA genotyping results from all specimens and calculated the

average editing ratio: r = e/t, where e is the sum of edited reads in

all specimens and t is the sum of covered reads in all specimens.

Then, for each individual specimen, we used a binomial test

based on the editing ratio r (the average chance of seeing edited

reads) to determine whether low coverage was the reason for

omission of this site.

1. On DNA level, with x reference reads covering this site, the

probability of obtaining this number of non-edited reads is (1-
r)x;

2. On RNA level, with y edited reads covering this site, the

probability of obtaining this number of edited reads is ry.

3. If ry and (1-r)x is both less than 0.05 and y .3, which means

the random error probability is less than 0.05 on both DNA

and RNA, we consider this site as a low coverage RDD site.

Stringent filtering of RDD candidates
To minimize false positives we applied the following filters:

1. To rule out the possibility that RDD sites could be genuine

polymorphic sites or mutations we excluded variants present in

dbSNP build 132 (except SNPs with molecular type ‘‘cDNA’’),

which includes variants from the 1000 Genome Project. Given

the potential for SNPs not present in dbSNP and the low

coverage of our DNA-seq, we rigorously removed sites which

were observed in any DNA-seq reads of any specimen.

Additionally, we downloaded the COSMIC database [65]

and filtered out any sites previously reported as mutations.

2. To exclude false positives resulting from poor mapping quality

around splicing sites, we filtered out all sites located within 8bp

intronic flanking region of all splicing sites.

3. To exclude potential contamination from the mouse genome

[66], we retrieved 61bp of the genomic sequences flanking

RDD sites and substituted the RDD site with the edited base.

Then we applied BLAT(V3.4) [67] alignment against mouse

genome (MM10). If the substituted flanking sequence had a

better hit on MM10 than the original flanking sequence and

the hit covered the RDD site with identity greater than 90%,

then we excluded the corresponding RDD site as potential

contamination.

4. To exclude false positives due to mismapping reads from

paralogous genes or repeat regions, we retrieved 61 and 101bp

of flanking genomic sequences and substituted all covered

RDD sites with edited bases, then aligned them onto human

genome (hg19/GRCh37) by BLAT. If the substituted flanking

sequence was able to be aligned better or equally well on other

regions in genome, we discarded those RDD sites as potential

false positives.

Functional annotation of RDD sites
All RDD sites were annotated by genic regions according to

Ensembl release 62 (see Table S18 in File S2 for all RDD sites) and

illustrated using Circos (http://mkweb.bcgsc.ca/circos). We de-

fined recurrent RDDs as those present in at least 2 samples, and

clusters of RDDs were defined as consecutive RDD sites within a

50bp distance or at least 3 RDD sites within a 100bp window. The

DARNED database for hg19, which contains 40,485 ARG and 3

CRT RNA editing sites collected from human ESTs studies, was

downloaded from http://darned.ucc.ie/download. Conserved

elements were predicted using the phastCons algorithm [27],

where elements are derived from comparative genome sequence

alignment of 46 species. miRNA target regions were predicted by

miRanda (downloaded from http://www.microrna.org), and only

predictions with a good score were retained. To evaluate transcript

expression with and without RDDs affecting miRNA target

regions we did the following. A matrix C(i,k) was created to store

the number of miRNA target RDDs in gene k in sample i. Then

we assigned gene expression data to miRNA target RDDs genes

from the above matrix and produced a new matrix C’(i,k) storing

RDD counts and expression values in nodes for 1,196 genes in 16

samples. Expression data of 135 (10.12%) genes could not be

assigned because of different version of gene annotation between

miRanda and Ensembl release 62 (Table S12 in File S2). To

estimate whether miRNA target RDDs affected gene expression,

we classified samples into two groups: with and without RDDs. To

minimize the bias from gene expression on detection of RDDs, we

considered only genes with approximate (RNA) sequencing

coverage greater than 10X. Furthermore, we only evaluated

protein coding genes since our negative control was RDDs

affecting coding regions. Genes with both miRNA target RDDs

and coding regions RDDs were removed from comparisons.

Network analysis was performed using Ingenuity (IPA) Knowledge

Base 9 (Ingenuity Systems, www.ingenuity.com).

Validation of RDD sites by Sanger sequencing
To validate RDDs, we amplified the RDD site by PCR from

both genomic DNA and cDNA using standard techniques (for

primers, see Table S11 in File S2). All amplification products were

sequenced using ABI PRISM 310 Genetic Analyzer with standard

techniques to confirm identity.

Data access
Sequence data is available at ftp://guest:guest@ftp.

prostatecentre.com/RNA-editing/.
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Supporting Information

File S1 Supplemental figures S1-S5. Figure S1, Compar-

ison of down-sampled DNA/RNA-seq data size and detected

RDDs number between whole dataset and down-sampled subsets.

Figure S2, The distribution of RDD site type across different

regions in the genome. Figure S3, RDD site type distribution in

Alu repeat, non-Alu repeat and non-repeat regions. Figure S4,

The distribution of RDDs in genic regions. Figure S5, Percentage

of the genes with miRNA target RDDs that were up-regulated in

primary prostate tumor in published microarray datasets.

(PDF)

File S2 Supplemental tables S1-S18. Table S1, Overview

of sequencing libraries. Table S2, The distribution of the type of

RDDs across different regions of the genome. Table S3, RDD

site type distribution in different genomic regions. Correlation

coefficients among samples for each genomic feature are provided.

Table S4, RDD sites identified in our study which overlap with

the DARNED database. Table S5, Comparison of RDDs

frequency between conserved elements (phastConsElements46-

way) and transcript regions. Table S6, Type distribution of

clustered RDDs. Table S7, Overview of total RDDs in different

genomic features in each sample. Table S8, Genes with RDDs

affecting exonic regions. Table S9, Rank of gene expression or

RDD frequency correlation between pairs of samples. Table S10,

Deleterious non-synonymous RDDs. Table S11, Genes with

miRNA target RDDs and their expression in each sample. Table
S12, Breakdown of miRNA targets with RDDs in each sample.

Table S13, Correlation between miRNA target RDDs and gene

expression. Table S14, Validation of mirT RDDs. Table S15,

Additional vaidation in an independent prostate cancer patient

cohort. Table S16, Percentage of the genes with miRNA target

RDDs that were upregulated in primary prostate tumor from

other microArray datasets. Table S17, Normalized gene

expression levels for each sample. Table S18, All identified

RDDs.

(XLSX)
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